

Volume 2, No. 3, March 2014

Journal of Global Research in Mathematical Archives

Available online at http://www.jgrma.info

PATH RELATED MEAN CORDIAL GRAPHS

A.Nellai Murugan¹ and G.Esther²

Department of Mathematics, V.O. Chidambaram College,

Tuticorin, Tamilnadu (INDIA)

¹E-mail: anellai.vocc@gmail.com

²E-mail: gsathishk26@gmail.com

Abstract: Let G = (V, E) be a simple graph. G is said to be a mean cordial graph if $f: V(G) \rightarrow \{0,1,2\}$ such that for each edge uv the induced map f* defined by $f^*(uv) = \left\lfloor \frac{f(u) + f(v)}{2} \right\rfloor$ where $\lfloor x \rfloor$ denote the least integer which is $\leq x$ and $|e_f(0) - e_f(1)| \leq 1$ where $e_f(0)$ is no.of edges with zero label. $e_f(1)$ is no.of edges with one label.

The graph that admits a mean cordial labeling is called a mean cordial graph(MCG). In this paper , we proved that $P_n \circ K_1$, $(P_n + K_1)$, $P_n \times P_n$, $(P_n : C_3)$, $(P_n : S_1)$, $P_n \times P_2$, $P_n + 2K_1$

Z-(P_n) are mean cordial graphs.

Keywords : Mean cordial labeling, Mean cordial graph.

2000 Mathematics Subject Classification 05C78.

1. INTRODUCTION:

A graph G is a finite non-empty set of objects called vertices together with a set of unordered pairs of distinct vertices of G which is called edges. Each $e = \{uv\}$ of vertices in E is called an edge or a line of G. For graph theoretical Terminology we follow

2. PRELIMINARIES:

We define the concept of mean cordial labeling as follows. Let G = (V, E) be a simple graph. G is said to be a mean cordial graph if $f : V(G) \rightarrow \{0,1,2\}$

Such that for each edge uv the induced map f* defined by $f^*(uv) = \left\lfloor \frac{f(u) + f(v)}{2} \right\rfloor$ where $\lfloor x \rfloor$ denote the

least integer which is $\leq x$ and $|e_f(0) - e_f(1)| \leq 1$ where $e_f(0)$ is no.of edges with zero label. $e_f(1)$ is no.of edges with one label.

A graph that admits a mean cordial labeling is called a mean cordial graph. We proved that $P_n \odot K_1$, $(P_n + K_1)$, $P_n \times P_n$, $(P_n : C_3)$, $(P_n : S_1)$, $P_n \times P_2$, $P_n + 2K_1$, Z- (P_n) are mean cordial graphs.

Definition 2.1(Comb)

The *Corona* $G_1 \odot G_2$ of two graphs G_1 and G_2 is defined as the graph G obtained by taking one copy of G_1 (which has p_1 points) and p_1 copies of G_2 and then joining the ith point of G_1 to every point in the ith copy of G_2 . The graph $P_n \odot K_1$ is called a *comb*.

Definition 2.2(Fan)

The *join* $G_1 + G_2$ of G_1 and G_2 consists of $G_1 \cup G_2$ and all lines joining V_1 with V_2 as vertex set $V(G_1 \cup G_2) = V(G_1) \cup V(G_2)$ and edge set $E(G_1 \cup G_2) = E(G_1) \cup E(G_2) \cup [uv : u \in V(G_1) \text{ and } v \in V(G_2)]$. The graph $P_n + K_1$ is called a *Fan*.

Definition 2.3(Grid)

To define the *product* $G_1 \times G_2$, consider any two vertices $u = (u_1, u_2)$ and $v = (v_1, v_2)$ in $V_1 \times V_2$. Then u and v are adjacent in $G_1 \times G_2$ whenever $(u_1 = v_1 \text{ and } u_2 \text{ adj } v_2)$ or $(u_2 = v_2 \text{ and } u_1 \text{ adj } v_1)$. The product $P_m \times P_n$ is called *planar grids*.

Definition 2.4(P_n : C₃)

A vertex of cycle C_3 attached and every vertex of a path P_n is denoted by $[P_n: C_3]$.

Definition 2.5(Pn : S1)

Star of length one is joined with every vertex of a path P_n through an edge.

It is denoted by $[P_n : S_1]$.

Definition 2.6[(Z-(Pn)]

In a pair of path P_n ith vertex of a path P_1 is joined with i+1th vertex of a path P_2 . It is denoted by Z-(P_n).

Definition 2.7(Double fan)

The *join* $G_1 + G_2$ of G_1 and G_2 consists of $G_1 \cup G_2$ and all lines joining V_1 with V_2 as vertex set $V(G_1 \cup G_2) = V(G_1) \cup V(G_2)$ and edge set $E(G_1 \cup G_2) = E(G_1) \cup E(G_2) \cup [uv : u \in V(G_1) \text{ and } v \in V(G_2)]$. The graph $P_n + 2K_1$ is called the *Doublefan*.

To define the *product*G₁ x G₂, consider any two vertices $u = (u_1, u_2)$ and $v = (v_1, v_2)$ in $V_1 \times V_2$. Then u and v are adjacent in G₁× G₂ whenever ($u_1 = v_1$ and u_2 adj v_2) or ($u_2 = v_2$ and u_1 adj v_1). The product K₂× P_n is called *Laddar*.

3. Main Results on Path Related Mean Cordial Graphs

Theorem 3.1

Graph $P_n \odot K_1$ is a Mean Cordial Graph.

Proof:

Let G = (V, E)Let G be $P_n \odot K_1$ Let $V[P_n \odot K_1] = \{(u_i, v_i): 1 \le i \le n\}$ Let $E[Pn \odot K1] = \{[(u_i u_{i+1}): 1 \le i \le n-1] \Box [(u_i v_i): 1 \le i \le n]\}$ Define $f: V(G) \rightarrow \{0,1,2\}$ by $f(u_i) = 1$ $f(v_i) = 0$ The induced edge labeling are $f^*(u_i u_{i+1}) = 1$ $f^*(u_i v_i) = 0$ Hence the graph satisfies the condition $|e_f(0) - e_f(1)| \le 1$.

Therefore the graph $P_n \odot K_1$ is a mean cordial graph.

For example, the graph $P_{4\odot}$ K₁ is shown in the figure.

Theorem 3.2

Fan $(P_n + K_1)$ is a Mean Cordial Graph.

Proof:

Let G = (V, E)Let G be $(P_n + K_1)$ Let $V[P_n + K_1] = \{u, u_i : 1 \le i \le n\}$ Let $E[P_n + K_1] = \{[(u \ u_i) : 1 \le i \le n] \square [(u_i \ u_{i+1}) : 1 \le i \le n-1]\}$ Define $f : V(G) \rightarrow \{0,1,2\}$ by f(u) = 2 $f(u_i) = \begin{cases} 1 \ if \ i \equiv 1 \mod 2 \\ 0 \ if \ i \equiv 0 \mod 2 \end{cases}, 1 \le i \le n$ The induced edge labeling are $f^*(u \ u_i) = 1$

 $f^{*}(u_{i}\;u_{i+1})=0$

Hence the graph satisfies the condition $|e_f(0) - e_f(1)| \le 1$.

Therefore the graph $(P_n + K_1)$ is a mean cordial graph.

For example the graph $(P_2 + K_1)$ is shown in the figure

Theorem 3.3

Grid $P_n \times P_n$ is a Mean Cordial Graph.

Proof:

Let G = (V, E)

Let G be $P_n \times P_n$

Let $V[G] = {u_{ij} : 1 \le i \le n}$

Let $E[G] = \{[(u_{ij} \ u_{i(j+1)}): 1 \le i \le n, 1 \le j \le n-1] \square [(u_{ij} \ u_{(i+1)j}): 1 \le i \le n-1, 1 \le i \le n]$

Define f : V(G) \rightarrow {0,1,2} by

The vertex labeling are

When $i \equiv 1 \mod 2$

 $f(u_{ij}) = 1$, $1 \leq i \leq n$, $1 \leq j \leq n$

When $i \equiv 0 \mod 2$

$$f(u_{ij}) = \begin{cases} 0 \text{ if } j \equiv 1 \mod 2 \text{ , } 1 \leq i \leq n \\ 1 \text{ if } j \equiv 0 \mod 2 \text{ , } 1 \leq j \leq n \end{cases}$$

The induced edge labelling are

$$f^{*}(u_{ij} u_{i(j+1)}) = \begin{cases} 1 \text{ if } i \equiv 1 \mod 2, 1 \leq i \leq n, 1 \leq j \leq n-1 \\ 0 \text{ if } i \equiv 0 \mod 2, 1 \leq i \leq n, 1 \leq j \leq n-1 \end{cases}$$
$$f^{*}(u_{ij} u_{(i+1)j}) = \begin{cases} 0 \text{ if } i \equiv 1 \mod 2, 1 \leq i \leq n-1, 1 \leq j \leq n \\ 1 \text{ if } i \equiv 0 \mod 2, 1 \leq i \leq n-1, 1 \leq j \leq n \end{cases}$$

Here the graph satisfies the condition $|e_f(0) - e_f(1)| \le 1$.

Hence , $P_n \times P_n$ is a mean cordial graph.

For example, the graph $P_4 \times P_4$ is shown in the figure.

Theorem 3.4

Graph $(P_n : C_3)$ is a Mean Cordial Graph.

Proof:

Let G = (V, E) Let G be (P_n :C₃) Let V[G] = {u_i :1≤ i ≤ n , u_{ij} :1≤ i ≤ n , 1≤ j ≤ 2} Let E[G] = {[(u_i u_{i+1}):1≤ i ≤ n-1] \Box [(u_i u_{i1}):1≤ i ≤ n] \Box [(u_i u_{i2}):1≤ i ≤ n] \Box [(u_{i1} u_{i2}):1≤ i ≤ n] Define f : V(G)→{0,1,2} by f(u_i) = {1 *if i* ≡ 1*mod*2 0 *if i* ≡ 0*mod*2 ,1≤ i ≤ n f(u_{i1}) = 2 , 1≤ i ≤ n f(u_{i2}) = 0 , 1≤ i ≤ n The induced edge labelling are f*(u_i u_{i1}) = 1 ,1 ≤ i ≤ n f*(u_i u_{i2}) = 0 ,1≤ i ≤ n $f^*(u_{i1}\;u_{i2}) = 1, 1 \le i \le n$

 $f^*(u_i \ u_{i+1}) = 0, 1 \le i \le n$

Hence, $e_f(0) + 1 = e_f(1)$

It satisfies the condition $|e_f(0) - e_f(1)| \le 1$.

Hence, the graph $(P_n : C_3)$ is a mean cordial graph.

For example, the graph $(P_2:C_3)$ is shown in the figure.

Theorem 3.5

Graph $[P_n : S_1]$ is a Mean Cordial Graph.

Proof:

Let G = (V, E)

Let G be $[P_n : S_1]$

Let $V[P_n : S_1] = \{u_i : 1 \le i \le n ; (u_{ij}) : 1 \le i \le n , 1 \le j \le 2\}$

Let $E[P_n : S_1] = \{[(u_i \ u_{i+1}) : 1 \le i \le n-1] \ \Box \ [(u_i \ u_{i1}) \ \Box \ (u_{i1} \ u_{i2}) : 1 \le i \le n]\}$

Define $f: V(G) \rightarrow \{0,1,2\}$ by

 $f(u_i u_{i1}) = 1$, $1 \le i \le n$

 $f(u_{i1}) = 0 , 1 \le i \le n$

 $f(u_{i2}) = \begin{cases} 2 \text{ if } i \equiv 1 \text{mod} 2\\ 0 \text{ if } i \equiv 0 \text{mod} 2 \end{cases}, \ 1 \leq i \leq n$

The induced edge labeling are

 $f^*(u_i u_{i+1}) = 1, 1 \le i \le n-1$

 $f^*(u_i u_{i1}) = 0, 1 \le i \le n$

$$f^*(u_{i1} u_{i2}) = \begin{cases} 1 \text{ if } i \equiv 1 \mod 2\\ 0 \text{ if } i \equiv 0 \mod 2 \end{cases}, \ 1 \le i \le n$$

Here, $e_f(1) + 1 = e_f(0)$, if n is even

 $e_f(1) = e_f(0)$, if n is odd

It satisfies the condition $|e_f(0) - e_f(1)| \le 1$.

Hence, $[P_n : S_1]$ is a mean cordial graph.

For example $[P_2: S_1]$ and $[P_3: S_1]$ are mean cordial graphs as shown in the

figure.

Theorem 3.6

Ladder $[P_n \times P_2]$ is a Mean Cordial Graph.

Proof:

Let G = (V, E) Let G be $[P_n \times P_2]$ Let V[$P_n \times P_2$] = {(u_{ij}) : $1 \le i \le n$, $1 \le j \le 2$ } Let E[$P_n \times P_2$] = {[(u_{i1} u_{i2}) : $1 \le i \le n$] \Box [(u_{ij} u_{(i+1)j}): $1 \le i \le n-1, 1 \le j \le 2$]} Define f : V(G) \rightarrow {0,1,2} by f(u_{i1}) = {1 *if i* = 1*mod2* 2 *if i* = 0*mod2*, $1 \le i \le n$ f(u_{i2}) = 0, $1 \le i \le n$ The induced edge labeling are

 $f^*(u_{i1} u_{i2}) = \begin{cases} 0 \text{ if } i \equiv 1 \mod 2\\ 1 \text{ if } i \equiv 0 \mod 2 \end{cases}, \ 1 \leq i \leq n$

 $f^*(u_{i1} u_{(i+1)1}) = 1, 1 \le i \le n-1$

 $f^*(u_{i2} u_{(i+1)2}) = 0, 1 \le i \le n-1$

Hence , the graph satisfies the condition $|e_f(0) - e_f(1)| \le 1$.

Therefore , $\left[P_n \times P_2\right]$ is a mean cordial graph.

For example , the graph $\left[P_3 \times P_2\right]$ is shown in the figure.

Theorem 3.7

 $Z - (P_n)$ is a Mean Cordial Graph.

Proof:

Let G = (V, E) Let G be Z - P_n Let V[Z - P_n] = {u_i, v_i : $1 \le i \le n$ } Let E[Z - P_n] = {[(u_i u_{i+1}) \Box (v_i v_{i+1}) \Box (v_i v_{i+1}) : $1 \le i \le n$ -1]} Define f : V(G) \rightarrow {0,1,2} by f(u_i) = {1 if i \equiv 1mod2 0 if i \equiv 0mod2}, 1 \le i \le n f(v_i) = {2 if i \equiv 1mod2 0 if i \equiv 0mod2}, 1 \le i \le n

The induced edge labeling are

 $f^*(u_i \ u_{i+1}) = 0 \ , \ 1 \le i \le n\text{-}1$

 $f^*\!\left(v_i \; v_{i+1}\right) = 1$, $1 \!\leq\! i \!\leq\! n \text{--} 1$

$$f^*(v_i u_{i+1}) = \begin{cases} 1 \text{ if } i \equiv 1 \mod 2\\ 0 \text{ if } i \equiv 0 \mod 2 \end{cases}, \ 1 \le i \le n-1$$

Here, $e_f(0) = e_f(1)$ when n is odd.

 $e_f(0) + 1 = e_f(1)$ when n is even.

It satisfies the condition $|e_f(0) - e_f(1)| \le 1$.

Hence , $Z - (P_n)$ is a mean cordial graph.

For example the graphs $Z - (P_4)$ and $Z - (P_3)$ are shown in the figure.

Theorem 3.8

Double Fan $P_n + 2K_1$ is a Mean Cordial Graph.

Proof:

Let G = (V, E) Let G be $P_n + 2K_1$ Let V[$P_n + 2K_1$] = {u, v, $u_i : 1 \le i \le n$ } Let E[$P_n + 2K_1$] = {[(u u_i) \Box (v u_i) : $1 \le i \le n$] \Box [(u_i u_{i+1}) : $1 \le i \le n-1$] Define f : V(G) \rightarrow {0,1,2} by f(u) = 1 f(v) = 2

$$f(u_i) = \begin{cases} 0 \text{ if } i \equiv 1 \mod 2\\ 1 \text{ if } i \equiv 0 \mod 2 \end{cases}, \ 1 \le i \le n$$

The induced edge labeling are

$$f^*(u\ u_i) = \begin{cases} 0 \ if \ i \equiv 1mod2 \\ 1 \ if \ i \equiv 0mod2 \end{cases}, \ l \leq i \leq n$$

$$f^*(v u_i) = 1, 1 \le i \le n$$

$$f^*(u_i u_{i+1}) = 0, 1 \le i \le n-1$$

Here $e_f(0) = e_f(1)$ when n is odd.

 $e_{f}(0) + 1 = e_{f}(1)$ when n is even.

Hence it satisfies the condition $|e_f(0) - e_f(1)| \le 1$.

Therefore the graph $P_n + 2K_1$ is a mean cordial graph.

For example $P_2 + 2K_1$ and $P_3 + 3K_1$ are shown in the figure.

- [1.] *Gallian*. J.A,A Dynamic Survey of Graph Labeling, The Electronic Journal of Combinotorics 6(2001)#DS6.
- [2.] *Harary, F., Graph Theory*, Addision Wesley Publishing Company Inc, USA, 1969.
- [3.]*A.NellaiMurugan, Studies in Graph theory- Some Labeling Problems in Graphs and Related topics,* Ph.D Thesis, September 2011.
- [4.]**A.Nellai Murugan** and V.Baby Suganya, Cordial labeling of path related splitted graphs, Indian Journal of Applied Research, ISSN 2249 –555X,Vol.4, Issue 3, Mar. 2014, PP 1-8.
- [5.] A.Nellai Murugan and M. Taj Nisha, A study on divisor cordial labelling of star attached paths and cycles, Indian Journal of Research ISSN 2250–1991,Vol.3, Issue 3, Mar. 2014, PP 12-17.
- **[6.]A.Nellai Murugan** and V.Brinda Devi, A study on path related divisor cordial graphs International Journal of Scientific Research, ISSN 2277–8179,Vol.3, Issue 4, April. 2014, PP 286 291.
- [7.] A.Nellai Murugan and A Meenakshi Sundari, On Cordial Graphs International Journal of Scientific Research, ISSN 2277–8179, Vol.3, Issue 7, July. 2014, PP 54-55.
- [8.]A.Nellai Murugan and A Meenakshi Sundari, Results on Cycle related product cordial graphs, International Journal of Innovative Science, Engineering & Technology, ISSN 2348-7968, Vol.I, Issue 5, July. 2014, PP 462-467.
- [9.]A.Nellai Murugan and P.Iyadurai Selvaraj, Cycle and Armed Cup cordial graphs, International Journal of Innovative Science, Engineering & Technology, ISSN 2348-7968, Vol.I, Issue 5, July. 2014, PP 478-485.
- [10.] A.Nellai Murugan and G.Esther, Some Results on Mean Cordial Labelling, International Journal of

Mathematics Trends and Technology ,ISSN 2231-5373,Volume 11, Number 2,July 2014,PP 97-101.

- [11.] A.Nellai Murugan and P. Iyadurai Selvaraj, Path Related Cup Cordial graphs, Indian Journal of Applied Research, ISSN 2249 –555X, Vol.4, Issue 8, August. 2014, PP 433-436.
- [12.] A.Nellai Murugan and A Meenakshi Sundari, Path related product cordial graphs, International Journal of Innovation in Science and Mathematics Engineering & Technology, ISSN 2347-9051, Vol 2., Issue 4, Augest 2014, PP 381-383