

Volume 1, No. 8, August 2013

Journal of Global Research in Mathematical Archives

ISSN 2320 - 5822

RESEARCH PAPER

Available online at http://www.jgrma.info

Some aspects on s- near-ring

Ripa Kataki

Department of mathematics, B.Borooah college , guwahati ,assam, Email: Ripakotoki@yahoo.in

Abstract: In this paper we prove some results on a distributive generated s-near ring w.r.t. a set of right complete orthogonal idempotent. If A is an ideal of a s-near ring N in which left annihilators are distributive generated then $\frac{N}{A}$ is a s-near ring. Also we have that the classical near ring of left quotions of a s- near ring is also a s- near ring. Lastly we prove if N possesses strictly projective summand then $\frac{J^{(l,t)}e_i}{J^{(l,t+1)}e_i}$ is either zero or simple for each tame N-group $J^{(l,t)}e_i$.

2010 AMS subject classification: 16D60, 16P70, 16Y30, 16N20.

Key words: Irreducible N-group, idempotensts, left annihilators, direct sum, radical, tame N-group.

INTRODUCTION

In a near-ring N with a right identity e if $N = \sum_{i=1}^{t} L_i(L_i \triangleleft N)$ and $e = \sum_{i=1}^{t} e_i(e_i \in L_i)$ then e_1, e_2, \dots, e_t are orthogonal

idempotents and each e_i is a right identity of each L_i such that $L_i = Ne_i$ [2]. We see more decompositions induced by idempotents in Fain [11] and Lyons [14]. The idea of near-rings in which N-subgroups form a chain gives rise to the notion of strictly nearly ordered near ring [6] which leads us to the concept of what may be called a s-near-ring.

N is said to be s-near ring if for a set $\{e_i, 1 \le i \le n\}$ of orthogonal idempotents $N = Ne_1 \oplus Ne_2 \oplus \dots \oplus Ne_n$ where N-subgroups of each Ne_i are linearly ordered by set inclusion.

A set of orthogonal idempotents whose sum is a right identity seems to carry some important characteristics. This relate the scharacter of near-rings together with linearly ordered principal N-subgroups in some special cases of projectivity.

Here we prove that if A is an ideal of a s- near-ring N w.r.t. a set of right complete orthogonal idempotents then $\frac{N}{A}$ is a s-near ring. Also classical near ring of left quotients of a s-near ring is also a s- near ring. Moreover if N possesses strictly projective N-

group, in case of an invariant radical J(N) in the sense J(N)=J(N)N, then for each tame N-group $J^{(\ell,t)}e_i$ we find $\frac{J^{(l,t)}e_i}{J^{(l,t+1)}e_i}$ is either zero or simple.

Throughout our discussion, unless otherwise specified, N will denote a zero symmetric right near ring with 1 E N.

1. DEFINITIONS AND NOTATIONS

The basic concepts which are used in this paper can be found in Pliz [18]. We now begin our discussion with some preliminary definitions and examples.

Two subsets A and B of an N-group are said to be linearly ordered if either $A \subseteq B$ or $B \subseteq A$.

If N-subgroups of an N-group E are linearly ordered then E is called a weak slnr-group(wslnr) and if principal N-subgroups E are linearly ordered then E is called a principal weak slnr-group (pwslnr). Near ring N is called a pwslnr if it is pwslnr as an N-group.

For any two left subgroups A and B of N if we define AB as $AB = \{\sum_{finite} a_i b_i, a_i \in A, b_i \in B\}$ then AB is a left N-subgroup in a d.g.n.r N. If A=B then AA = $\{\sum_{finite} a_i b_i, a_i \in A, b_i \in A\}$. Clearly (AA)A \neq A(AA). In this sense we call A(AA) as left 3- power

of A, written as $A^{(l,3)}$. We consider $A^{(l,t)} = A \cdot A^{(l,t-1)}$. Consider the near-ring N = {0,a,b,c} with addition and multiplication defined by the following tables:

Table 1.1

+	0	a	b	c	•	0	a	b	с
0	0	a	b	с	0	0	0	0	0
a	a	0	с	b	a	0	a	0	a
b	b	с	0	a	b	0	0	b	b
с	c	b	a	0	с	0	a	b	с

Here orthogonal idempotents are 0, a and b. Again No = 0, Na = $\{0, a\}$ and Nb = $\{0, b\}$. Thus we see N= N0 \oplus Na \oplus Nb. Also we observe that Na and Nb are wslnr-N-groups. In this sense we call, N is a s-near-ring.

In other words we define, A near-ring N is a s- near-ring if for a set $\{e_1, e_2, \dots, e_k\}$ of orthogonal idempotents of N, we have N=N $e_1 \oplus N e_2 \oplus \dots \oplus N e_k$ where N e_i (i=1,2,...,k) is a wslnr-N-group.

A set $\{e_1, e_2, \dots, e_n\}$ of orthogonal idempotents of N is called a right complete orthogonal idempotents if $e = \sum_{i=1}^{n} e_i$ is a right identity of N.

 $\tilde{N} = \{ 0, a, b, c \}$ is a near-ring under addition and multiplication defined by the following tables:

+	0	a	b	с	•	0	a	b	с
0	0	a	b	с	0	0	0	0	0
a	a	0	с	b	a	0	a	a	a
b	b	с	0	a	b	0	b	b	b
с	с	b	a	0	с	0	c	c	с

Table 1.2

Here orthogonal idempotents are 0 and b. Again, 0.b = 0, a.b = a, b.b.=b, c.b=c. But b.a.=b,b.c.=b. Therefore b=0+b is a right identity of N..Thus {0,b} is a set of right complete orthogonal idempotents of N.

Left annihilator of a ε N is defined as $l(a) = \{n \varepsilon N | na = 0\}$.

An N-groupE is irreducible (simple) if it has no proper N-subgroup (ideal) of it [16].

An N-group E is called semi simple if it is the direct sum (or sum) of simple ideals [16]. The near ring N is semi simple if N is semi simple as an N-group.

An N-group E is called tame N-group [18] if any N-subgroup of E is an ideal of E.

The radical $J_2(N)$ is defined to be the intersection of all the annihilators of irreducible N-groups and J(N) is the intersection of all the maximal left ideals of N which are also maximal as left N-subgroups [16]. If $l \in N$, it is seen that $j_2(N) = J(N)(=J)[17]$. Radical J is called D-regular if for each a ϵ J, we have ax ϵJ such that a=ax. The radical of E is defined as $J' = \cap \{M \ M \ is \ an \ ideal \ maximal \ as \ a \ N - subgroup \ of \ N\}$.

An N-group E is called semi-simple if it is a direct sum of simple ideals.[16]

The near-ring N is semi-simple if $_{N}N$ is semi-simple.

N is called strictly semi-simple if N is direct sum of irreducible left ideals[16]. Clearly strictly semi-simple near- rings are semi-simple.

N-group E is projective if for any N-groups A, B and for any epimorphism α : A \rightarrow B and homomorphism β : A \rightarrow B, there exists a homomorphism γ : E \rightarrow A such that $\alpha\gamma=\beta$.

A short exact sequence $(s.e.s)0 \rightarrow A \rightarrow B \xrightarrow{f} C \rightarrow 0$ almost splits if there is a splitting homomorphism $g: C \rightarrow B$ such that $fg = I_C$ (identity). The s.e.s splits if there is a normal splitting homomorphism. N-group E is strictly projective if every s.e.s splits.Clearly, a strictly projective N-group is projective.

A right near-ring $C_{c\ell}$ containing N as a subnear-ring is called a classical near-ring of left quotients of N w.r.t. a semigroup S of distributive non-zero divisors of N if and only if

(i) $1 \in C_{c\ell}$, (ii) elements of S are invertible in $C_{c\ell}$ and (iii) for each $x \in C_{c\ell}$ there exists $s \in S$ such that $sx \in N$.

2. PRELIMINARIES

Lemma 2.1: If left annihilators of N are distributively generated then for any set $\{e_1, e_2, \dots, e_k\}$ of orthogonal idempotents, $l\left(\sum_{i=1}^k e_i\right) = l(e_1) \cap l(e_2) \cap \dots \cdot l(e_k).$

Proof: Let $x \in l(e_1) \cap l(e_2) \cap \dots \cdot l(e_k)$

Then $xe_1 = xe_2 = \dots = xe_k = 0$

Now $x \in l(e_1) \Rightarrow x = \sum_{finite} \pm s_{1i}$ where $s_{1i} \in S_1$ and $\ell(e_1) = \langle S_1 \rangle, S_1$ is a set of distributive elements of N.

As each $s_{1i} \in l(e_1)$, we have $s_{1i}e_1 = 0$, for all i.

Then we have
$$x(\sum_{i=1}^{k} e_i) = 0 \Longrightarrow x \in l\left(\sum_{i=1}^{k} e_i\right)$$

Thus
$$l(e_1) \cap l(e_2) \cap ... \cap l(e_k) \subseteq l(\sum_{i=1}^k e_i)$$
.....(i)

Conversely, suppose $y \in l(\sum_{i=1}^{k} e_i)$

Then $y = \sum_{i=1}^{k} \pm d_i$ where $d_i \in T$ and $l(\sum_{i=1}^{k} e_i) = \langle T \rangle$, T is a set of distributive elements of N.

Now $d_i \in l(\sum_{i=1}^k e_i)$ for all i.

$$\Rightarrow d_i l\left(\sum_{i=1}^k e_i\right) = 0 \Longrightarrow d_i \in \ell(e_1), \text{ for all if }$$

Similarly, we get $d_i \in l(e_2), \dots, d_i \in l(e_k)$, for all i.

Hence $y \in l(e_1) \cap l(e_2) \dots \cap l(e_k)$.

Thus
$$l\left(\sum_{i=1}^{k} e_i\right) \equiv l(e_1) \cap l(e_2) \dots \cap l(e_k)$$
(ii).

From (i) and (ii) we get the result.

Lemma 2.2: If left annihilators of N are distributively generated and $\{e_j \mid 1 \le j \le k\}$ is a set of right complete orthogonal idempotents of N then an ideal I of N can be imbedded to $Ie_1 \oplus \ldots \oplus Ie_k$

Proof: Define a mapping $f: I \to Ie_1 \oplus \ldots \oplus Ie_k$ by $f(x) = (xe_1, xe_2, \ldots, xe_k)_{\mathbb{P}}$

For x, $y \in I$ and $n \in N$, f(x+y)=f(x)+f(y) and f(nx)=nf(x)

As
$$e = \sum_{j=1}^{k} e_j$$
 is a right identity, f is 1-1.

© JGRMA 2012, All Rights Reserved

Thus f is an N-monomorphism and so I is embedded in $Ie_1 \oplus \ldots \oplus Ie_k$.

Note1 : As I is an ideal , $Ie_1 \oplus Ie_2 \oplus \dots \oplus Ie_k \subseteq I$. Thus $I \cong Ie_1 \oplus \dots \oplus Ie_k$. 3. Main results

Theorem 3.1: If N is a s- near-ring w.r.t. a set of right complete orthogonal idempotents such that left annihilators of N are distributively generated then for an ideal A of N, $\frac{N}{A}$ is a s-near ring.

Proof: Let $S = \{e_i, 1 \le i \le n\}$ be a set of right complete orthogonal idempotents of N. Then $N = Ne_1 \oplus Ne_2 \oplus ... \oplus Ne_n$ where each Ne_i is a wslnr N-group.

As A is an ideal of N, Ae_i is an ideal of the N-group Ne_i for all i = 1, 2,...,n.

Define a mapping

$$f: Ne_1 \bigoplus Ne_2 \bigoplus \dots \dots \bigoplus Ne_n \to \frac{Ne_1}{Ae_1} \oplus \frac{Ne_2}{Ae_2} \bigoplus \dots \dots \oplus \frac{Ne_n}{Ae_n} \xrightarrow{\text{by}} f(n_1e_1, \dots, n_ne_n) = (\overline{n_1e_1}, \overline{n_2e_2}, \dots, \dots, \overline{n_ne_n}) \text{ where } \overline{n_ie_i} = n_ie_i + Ae_i \text{ Then clearly } f \text{ is an N-epimorphism.}$$

Again, Ker f = $\{(n_1e_1, \dots, n_ne_n) | f(n_1e_1, \dots, n_ne_n) = (\overline{0}, \dots, \overline{0})\}$

 $\cong A$, by Lemma 2.2

Thus
$$\frac{N}{A} \cong \frac{Ne_1}{Ae_1} \oplus \dots \oplus \frac{Ne_n}{Ae_n}$$
.

Now define another mapping

 $\frac{N}{A} \times \frac{Ne_i}{Ae_i} \to \frac{Ne_i}{Ae_i} \text{ by}$

$$(n+A, \alpha e_i + Ae_i) \mapsto n \alpha e_i + Ae_i$$

, this mapping is welldefined as Ae_i is an ideal of Ne_i

Also,
$$((n+A)+(n_1+A))(\alpha e_i + Ae_i)_{-}(n+A)(\alpha e_i + Ae_i) + (n_1+A)(n_1\alpha e_i + Ae_i)$$

and $((n+A)((n'+A)(\alpha e_i + Ae_i)) = ((n+A)(n'+A))(\alpha e_i + Ae_i)$

Thus $\frac{Ne_i}{Ae_i}$ is an $\frac{N}{A}$ -group for all $1 \le i \le n$.

Suppose \overline{K}_1 and \overline{K}_2 be two \overline{N} -subgroups of $\overline{Ne_i}$. Then K_1 and K_2 are N-subgroups of Ne_i . As each Ne_i is a wslnr, N-group, therefore $K_1 \subseteq K_2(say) \implies \overline{K}_1 \subseteq \overline{K}_2$

Thus $\overline{Ne_i}$ is a wslnr $\frac{N}{A}$ -group, for all $1 \le i \le n$ and hence $\frac{N}{A}$ is a s near-ring.

Consider $N=Ne_1 \oplus Ne_2 \oplus \dots \oplus Ne_n$ where each Ne_i is a wslnr N-group and e_i 's are orthogonal idempotents. If Q is the classical near ring of left quotients, then clearly $Q = Qe_1 \oplus Qe_2 \oplus \dots \oplus Qe_n$. Also as each Ne_i is a wslnr N-group and for any ideal K of Q we have, S^{-1} (K \cap N) = K,[] so each Qe_i is a wslnr Q - group. Thus we have

Result 3.2: The classical near ring of left quotients of a s-near ring is also a s-near ring. In the following result N is a pwslnr and left annihilators of N are distributively generated. Also N satisfies the acc on left N-subgroups and each summand of N is a strictly projective N-group with invariant radical J(N) such that J(N) = J(N)N.

Result 3.3: If N is a s-near-ring w.r.t. a set $\{e_i, 1 \le i \le k\}$ of right complete orthogonal idempotents then $\frac{J^{(l,t)}e_i}{J^{(l,t+1)}e_i}$ is either zero or simple for each tame N-group $\mathbf{J}^{(\ell,t)}\mathbf{e}_i$ $t \ge 0$.

Proof: Here N=N $e_1 \oplus N e_2 \oplus \dots \oplus N e_k$ where each N e_i , $1 \le i \le k$ is a wslnr N-group.

Now J(Ne_i)=J(N) Ne_i [13]

=(J(N)N)
$$e_i = J(N) e_i = J e_i$$
, where J(N) =J

Then Je_i is the unique ideal maximal as N-subgroup and so each $\frac{Ne_i}{Je_i}$, is an irreducible N-group for all i= 1,2,...,k.

Define a mapping

 $\phi: Ne_1 \oplus \oplus Ne_k \rightarrow \frac{Ne_1}{Je_1} \oplus \oplus \frac{Ne_k}{Je_k} \text{ by}$

$$\phi(n_1e_1,\ldots,n_ne_n) = (\overline{n_1e_1},\ldots,\overline{n_ne_n}), \text{where } \overline{n_ie_i} = n_ie_i + Je_i$$

© JGRMA 2012, All Rights Reserved

Clearly ϕ is an N-epimorphism.

Also ker
$$\phi = \{(n_1e_1, \dots, n_ke_k) \mid \phi(n_1e_1, \dots, n_ke_k) = (\overline{0}, \dots, \overline{0})\}$$

$$= \{ (n_1 e_1, \dots, n_k e_k) \mid n_i e_i \in J e_i, 1 \le i \le k \} = J e_1 \oplus \dots \oplus J e_k \cong J, \text{ by Lemma 2.2}$$

So,
$$\frac{N}{J} \cong \frac{Ne_1}{Je_1} \oplus \dots \oplus \frac{Ne_k}{Je_k}$$
.

J being invariant, $\frac{N}{J}$ is a near-ring.

Define another mapping

$$\alpha: \frac{N}{J} \times \frac{Ne_i}{Je_i} \to \frac{Ne_i}{Je_i} \quad by$$

 $\alpha(\overline{n,n_ie_i}) = \overline{nne_ie_i}$

It can be easily seen that α is well defined

Suppose
$$\frac{Ke_i}{Je_i}$$
 be a proper $\frac{N}{J}$ sub-group of $\frac{Ne_i}{Je_i}$.

Then Ke_i is a proper N-subgroup of Ne_i hence $\frac{Ke_i}{Je_i}$ is an N-subgroup of $\frac{Ne_i}{Je_i}$ which is a contradiction.

Thus
$$\frac{Ne_i}{Je_i}$$
 is an irreducible $\frac{N}{J}$ -group.

By lemma 3.5 [6],
$$J^{(\ell, t+1)}$$
 is an ideal of $J^{(\ell, t)}$.

 $\text{Therefore, } J^{\left(\ell,\,t+1\right)} \, e^{}_i \text{ is an ideal of } J^{\left(\ell,\,t\right)} \, e^{}_i.$

Now suppose
$$\frac{Me_i}{J^{(\ell, t+1)}e_i}$$
 be an $\frac{N}{J}$ -subgroup of $\frac{J^{(\ell, t)}e_i}{J^{(\ell, t+1)}e_i}$

Then Me_i is an N-subgroup of $J^{\left(\ell,t\right)}e_i(\subseteq N)$.

As for each $t \ge 0$, $J^{(\ell, t)} e_i$ is a tame N-group, therefore Me_i is an ideal of $J^{(\ell, t)} e_i$.

$$\Rightarrow \frac{Me_i}{J^{\left(\ell, t+1\right)}e_i} \text{ is } \frac{N}{J} \text{ ideal of } \frac{J^{\left(\ell, t\right)}e_i}{J^{\left(\ell, t+1\right)}e_i}$$

Thus
$$\frac{N}{J}$$
 -subgroups of $\frac{J^{(\ell,t)}e_i}{J^{(\ell,t+1)}e_i}$ are ideals, $t \ge 0$.

Hence $\frac{N}{J}$ is the direct sum of irreducible left ideals. Therefore $\frac{N}{J}$ is semi-simple and has the dcc on left ideals[15].

Therefore
$$\frac{J^{(\ell,t)}e_i}{J^{(\ell,t+1)}e_i}$$
 is semi-simple as $\frac{N}{J}$ -group [15]. As each Ne_i are wslnr, therefore $\frac{J^{(\ell,t)}e_i}{J^{(\ell,t+1)}e_i}$ is either zero or simple.

RFFERENCES

- Baruah, M.N, "Near-rings and near-ring modules –some special types" (dissertation for Ph.D.), Naya Prokash, Culcutta, 1984.
- [2.] Beidleman, j.C: "Non semi-simple distributively generated near-rings with minimum condition, Math, Abb. 170 (1967), 206-213.
- [3.] Chatters, A.W. and Hajarnavis, C.R. : Rings with chain conditions, pitmam Publishing Program, Boston, 1980.
- [4.] Choudhruy, S.C.: On near-rings and near-ring modules, Ph.D. dissertation, IIT, Kanpur,
- [5.] Chowdhury, K.C. and Saikia, Helan K. : On near-rings with acc on annihilators, Mathematica Pannonica, 8/2 (1997). 177-185.
- [6.] Chowdhury, K.C., Kataki, R. and De. B : On near-ring radicals and N-subgroups forming chain, Far east J. Math., Sci. (FJMS) 2(\$) (2000), 577-595.
- [7.] De Stefano, S.and Di Sieno, S.: Semiprime near-ings, J. Austral. Math Soc. (Series A0 51 (1991), 88-94.
- [8.] Divinski, N : D-regularity, Proc. Amer. Math Soc. 9(1958).
- [9.] Eisenbud, D and Griffith, P. : Serial rings, J. of Algebra, 17 (1971
- [10.] Forhlich, A.: Distributively generated near-rings-I (Ideal theory), Proc. Lon Math. Soc. 8(1958), 76
- [11.] Fain C.G.: Some structure theorems for near-rings, doctoral dissertation, University of Oklahama, 1968.
- [12.] Goodearl, K.R. : Ring theory, Non singular Rings and modules, Marcel dekkan Inc., New york, 1976.

- [13.] Helen k. Saikia, K.C.Chowdhury :On near-ring subgroups of projective and d-near ring groups, Bull, Callcutta Math.Soc. 88(1996) 63-70.oups of projective and d-near ring groups, Bull, Callcutta Math.Soc. 88(1996) 63-70.
- [14.] Ligh, S.: On regular near-rings, Mathematica Japonica, Vol 15, No.1,1970.
- [15.] Lyons C.G.: Endomorphism Near-rings, Oberwallfach, 1972.
- [16.] Mason, Gordon.:Injective and projective near-ring modules, Compositio Mathemetica , 33(1)(1976),43-54.
- [17.] Oswald A.: Semi simple Near rings having the maximal condition on subgroups, J.London Math.Soc. (2) 11, 1975, 408-412.
- [18.] Pilz, G.:Near-rings (the theory and its applications) North Holland Publ. Comp. 1977.
- [19.] Rao, R.S., Prasad, K.S. : A radical for right near rings, Southeast Asian Bulletin of Mathematics.
- [20.] Tiwari, K and Seth, V.: Classical near-rings of left and right
- [21.] Warfield, R.B.: Serial rings and finitely presented modules, J. of Algebra, 37(1975), 187-222.