ON REGULAR mI-CLOSED SETS IN MINIMAL IDEAL TOPOLOGICAL SPACES
Abstract
we introduce Am-I-sets by using the notion of regular-mI-closed sets.
2010 Mathematics Subject Classification: 54A05, 54C10
Keywords: regular-mI-closed set, Am-I-sets, m∗-perfect and m∗-dense in itself
Full Text:
PDFReferences
M. E. Abd El-Monsef, E. F. Lashien and A. A. Nasef, On I-open sets and I-continuous functions, Kyungpook Math. J., 32 (1992), 211730.
A. Csaszar, Generalized topology, generalized continuity, Acta Math. Hun- gar., 96 (2002), 351-357.
E. Hatir and T. Noiri, On decompositions of continuity via idealization, Acta Math. Hungar., 96 (2002), 34117349.
E. Hayashi, Topologies defined by local properties. Math. Ann., 1964, 156: 205 - 215.
D. Jankovic and T. R. Hamlett, Compatible extensions of ideals, Boll. Un. Mat. Ital., B(7)6, (1992), 453-465.
D. Jankovic and T. R. Hamlett, New Topologies from old via Ideals, Amer. Math. Monthly, 1990, 97(4), 295 - 310.
K. Kuratowski, Topology, Vol. I, Academic Press (New York, 1966).
H. Maki, J. Umehara, T. Noiri. Every topological space is pre T1/2 . Mem. Fac. Sci. Kochi Univ. Ser. A Math., 1996, 17: 33 - 42.
O. Njastad, On some classes of nearly open sets, Pacific J. Math., 15 (1965), 96117970.
O. B. Ozbakiri and E. D. Yildirim, On some closed sets in ideal minimal spaces, Acta Math. Hungar., 125 (3) (2009), 227-235.
V. Popa and T. Noiri, On m-continuous functions, Anal. Univ. Dunarea de Jos Galati, Ser. Mat. Fiz. Mec. Teor. (2), 18 (2000), 31-41.
V. Renukadevi, D. Sivaraj, T. Tamizh Chelvam. Codense and completely codense ideals. Acta Math. Hungar., 2005, 108(3): 197 - 205.
R. Vaidyanathaswamy. The localization theory in set topology. Proc. Indian Acad. Sci., 1945, 20: 51 - 61.
Refbacks
- There are currently no refbacks.