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Abstract

A linear map ϕ from a C∗−algebra A to a C∗−algebra B is positive if it maps
positive elements of A to positive elements of B. ϕ is completely positive if
for the corresponding linear maps ϕn from the C∗−algebra of n by n matrices
with entries from A to the C∗−algebra of n by n matrices with entries from
B, ϕn is positive for all natural numbers n. ϕn is completely bounded if
every ϕn is bounded and the supremum of the norm of ϕn is finite for all
natural numbers n. In this paper we have considered the C∗−algebras of
n by n matrices, constructed various maps between the C∗−algebras and
characterized the cross-norms of the C∗−algebras. We have established the
conditions for complete positivity and complete boundedness of the tensor
product of the maps on the C∗−algebras.

Keywords : C∗−algebras, Tensor products and Tensor cross-norms.

0.1 Introduction

The development of the theory of C∗−algebras is an area that has attracted
a lot of concern from many Mathematicians. In 1955, Stinespring obtained a
theorem characterizing certain operator valued positive maps on C∗−algebra
in terms of representations of those C∗−algebras, what is called Stinespring
Representation theorem [9], [17] and asserted that if A is a unital C∗-algebra
and ϕ : A −→ B(H) is a completely positive map, then there exists a Hilbert
space K, a bounded operator V : H → K and a unital ∗-homomorphism,
π : A −→ B(H) such that ϕ(a) = V ∗π(a)V, for every a ∈ A and that
∥ϕ∥cb = ∥ϕ(1)∥ = ∥V ∗V ∥ = ∥V ∥2, [17].

Naimark showed that every C∗−algebra can be faithfully represented as a
subalgebra of B(H). Every representation π of A on B(H) and vector x ∈ H
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defines a linear functional f on A by f(a) = ⟨π(a)x, x⟩. Such a functional
is positive, (and is automatically continuous and contractive). There exists
a Hilbert space Hf , a vector xf ∈ Hf and a representation πf of A on Hf

such that f(a) = ⟨πf (a)xf , xf⟩ , ∀ a ∈ A, [14]. This construction is known
as Gelfand-Naimark-Segal construction.

Let H be a Hilbert space, B(H) be the set of all bounded linear oper-
ators on H and H(n) be the direct sum of n−copies of H. If Mn(B(H)),
is the set of n × n matrices with entries from B(H) and B

(
H(n)

)
is the

space of all bounded linear operators on H(n), then there exist linear maps
ϕ : Mn(B(H)) → B

(
H(n)

)
such that ϕ is a ∗−isomorphism, for all n ∈ N.

Moreover, this ϕ is a representation of Mn(B(H)) on the Hilbert space H(n).
Therefore, we can identify Mn(B(H)) with B

(
H(n)

)
. Thus Mn(B(H)) ∼=

B
(
H(n)

)
. This identification gives a unique norm that makes the ∗-algebra

Mn(B(H)) a C∗-algebra [14]. This means that, for any subspace A of B(H),
Mn(A) is considered as a subspace ofMn(B(H)) ∼= B(H(n) and henceMn(A)
is a C∗-algebra. Thus, Mn(A) ⊆ Mn(B(H)) and hence Mn(A) can be con-
sidered as an operator space.

Given a linear map ϕ : A → B, then we can define corresponding maps
ϕn : Mn(A) → Mn(B) by
ϕn([ai,j]) = [ϕ(ai,j)] for all n ∈ N, [ai,j] ∈ Mn(A). ϕ is positive if it maps
positive elements of A to positive elements of B. That is, if ϕ(A+) ⊆ ϕ(B+).
ϕ is completely positive if ϕn maps positive elements in Mn(A) to positive
elements in Mn(B) for all n ∈ N. ϕ is bounded if there is an M ∈ R such that
∥ϕ([ai,j])∥ ≤ M∥[ai,j]∥ and ϕ is completely bounded if each ∥ϕn∥ is bounded
for every n ∈ N and that the completely bounded norm ∥ϕ∥cb is finite, that
is, sup{∥ϕn∥ : n ∈ N} < ∞ and we set

∥ϕ∥cb = sup{∥ϕn∥ : n ∈ N} < ∞.

Let T : X → X be a map from the vector space X into itself, then the
norm of T is given by ∥T∥ = sup{∥Tx∥ : ∥x∥ ≤ 1, x ∈ X}, [17].

Researchers have developed some forms of a completely positive map
ϕ : Mn(A) −→ Mn(B) on matrices. (Kraus) ϕ(A) =

∑
j V

∗
j AVj, where Vj

are matrices of the same appropriate size and (Choi) ϕ(A) =
∑

i,j ϕi,jE
∗
i AEj

where ϕ = [ϕi,j] is a positive matrix and Ei are matrix units of appropriate
sizes, [7], [5], [6].

If the vectors ai and bj are orthonormal bases ofH and K, then the vectors
ai⊗ bj form an orthonormal basis of H⊗K. The algebraic tensor product of
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two Hilbert spaces H and K has a natural positive definite sesquilinear form
(scalar product) induced by the sesquilinear forms of H and K. So in partic-
ular it has a natural positive definite quadratic form and the corresponding
completion is a Hilbert spaceH⊗K, called the (Hilbert space) tensor product
of H and K [17]. If a norm ∥.∥γ on H⊗K satisfies the condition

∥x1 ⊗ x2∥γ = ∥x1∥γ∥x2∥γ ∀ x1 ∈ H, x2 ∈ K,

then it is called a cross-norm on H⊗K. The completion of H⊗K under a
cross-norm γ is denoted by H⊗γ K.

Takesaki [15] studied cross-norms and asserted that if A1 and A2 are
unital C∗-algebras and γ is a C∗-cross-norm on A1⊗A2, then ∥x∥min ≤ ∥x∥γ
for all x ∈ A1 ⊗A2 and ∥x∥max ≥ ∥x∥γ

In our work, we have determine the tensor products of elements of the
C∗−algebra of n by nmatrices, determined and characterized the cross norms
of these C∗−algebras in relation to the maps constructed between them. We
have also investigate the conditions for complete positivity and complete
boundedness of the tensor products of the constructed maps. We therefore
arrange our work in the various sections in the following order:
1. Introduction; 2. Preliminaries; 3. Main Results.

0.2 Preliminaries

Definition 0.2.1. A Banach ∗-algebra is a ∗ -algebra A together with a
complete submultiplicative norm such that

∥a∗∥ = ∥a∥ (a ∈ A).

Definition 0.2.2. A C∗−algebra is a Banach ∗-algebra such that

∥a∗a∥ = ∥a∗∥2 (a ∈ A).

Definition 0.2.3. An n-tuple of operators (T1, ..., Tn) is said to doubly
commute provided that TiTj = TjTi and TiT

∗
j = T ∗

j Ti for all i ̸= j .

Remark 0.2.4. Doubly commuting operators is a natural setting for generaliz-
ing the theory of spectral sets from a single-variable theory to a multivariable
theory is the theory of tensor products of operator systems.
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0.3 Main Results

Given an arbitrary C∗-algebra A, by Gelfand Naimark Segal, A is a closed
self-adjoint subalgebra of B(H) for some Hilbert space H. This implies that
Mn(A) is a closed self-adjoint subalgebra of Mn(B(H)) and hence Mn(A) is
a C∗-algebra.

LetMn(A) andMn(B) be unital C∗-algebras of n×nmatrices with entries
from A and B respectively. Then their tensor product can be made into a
∗-algebra by setting ([Tij]⊗ [Sij])

∗ = [Tij]
∗⊗ [Sij]

∗, where [Tij], [Sij] ∈ Mn(A).
Let [Tij] ∈ Mn(B(H)). Then the norm of [Tij] can be approximated by

∥[Tij]∥ ≤

√√√√√ n∑
i,j=1

∥Tij∥2.

Therefore, if we take ∥.∥2 then we have,

∥[Tij]∥2 =

√√√√√ n∑
i,j=1

∥Tij∥2.

Proposition 0.3.1. Let Mn(A) and Mn(B) be unital C∗-algebras of n × n
matrices with entries from A and B respectively [Tij] ∈ Mn(A) and [Sij] ∈
Mn(B) be positive with nonnegative entries then, [Tij] ⊗ [Sij] ∈ Mn(A) ⊗
Mn(B), where [Tij]⊗ [Sij] is a block matrix of size n2×n2 and ∥[Tij]⊗ [Sij]∥ =
∥[Tij]∥∥[Sij]∥.

Proof. Let [Tij] ∈ Mn(A) and [Sij] ∈ Mn(B) then,

[Tij]⊗ [Sij] =


T11 T12 · · · T1n

T21 T22 T2n
...

Tn1 Tn2 · · · Tnn

⊗


S11 S12 · · · S1n

S21 S22 S2n
...

Sn1 Sn2 · · · Snn
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=




T11S11 T12S11 · · · T1nS11

T21S11 T22S11 T2nS11
...

Tn1S11 Tn2S11 · · · TnnS11

 · · ·


T11S11 T12S11 · · · T1nS11

T21S11 T22S11 T2nS11
...

Tn1S11 Tn2S11 · · · TnnS11


... · · · ...

T11Sn1 T12Sn1 · · · Tn1Sn1

T21Sn1 T22Sn1 T2nSn1
...

Tn1Sn1 Tn2Sn1 · · · TnnSn1

 · · ·


T11Snn T12Snn · · · T1nSnn

T21Snn T22Snn T2nSnn
...

Tn1Snn Tn2Snn · · · TnnSnn





=



T11S11 T12S11 · · · T1nS11 · · · T11S1n T12S1n · · · T1nS1n

T21S11 T22S11 T2nS11 T2nS1n T22S1n T2nS1n
...

...
Tn1S11 Tn2S11 · · · TnnS11 Tn1S1n Tn2S1n · · · TnnS1n

... · · · ...
T11Sn1 T12Sn1 · · · Tn1Sn1 T11Snn T12Snn · · · T1nSnn

T21Sn1 T22Sn1 T2nSn1 T21Snn T22Snn T2nSnn
...

...
Tn1Sn1 Tn2Sn1 · · · TnnSn1 Tn1Snn Tn2Snn · · · TnnSnn


.

Since Tij and Sij are nonnegative, we have ∥[Tij]⊗[Sij]∥ =
(∑n

i,j=1 ∥TijSij∥2
) 1

2
=(∑n

i,j=1(∥Tij∥∥Sij∥)2
) 1

2
=

(∑n
i,j=1(∥Tij)

2
) 1

2
(∑n

i,j=1(∥Sij∥)2
) 1

2
= ∥[Tij]∥∥[Sij]∥.

Remark 0.3.2. Suppose H(n) and K(n) are the direct sums of n-copies of the
Hilbert spaces H and K respectively, h, h′ ∈ H(n) and k, k′ ∈ K(n), then we
obtain an inner product on H(n) ⊗K(n) by setting

⟨h⊗ k, h′ ⊗ k′⟩ = ⟨h, h′⟩H(n)⟨k, k′⟩K(n) .

Thus the completion of H(n) ⊗ K(n) with respect to this inner product is a
Hilbert space.

Proposition 0.3.3. Let H(n) and K(n) be the direct sums of n-copies of
the Hilbert spaces H and K respectively, h ∈ H(n) and k ∈ K(n). Let also
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[Tij] ∈ Mn(B(H)) and [Sij] ∈ Mn(B(K)) be operators on H(n) and K(n) such
that [Tij]h = h, that is Mn(B(H)) 7→ B(H(n)). Then, ([Tij]⊗ [Sij])(h⊗ k) =
([Tij]h)⊗ ([Sij]k) defines a bounded linear operator on H(n) ⊗K(n).

Proof. Let H(n) and K(n) be the direct sums of n-copies of the Hilbert spaces
H and K respectively, h ∈ H(n) and k ∈ K(n). Then for any arbitrary
operators [Tij] ∈ Mn(B(H)) and [Sij] ∈ Mn(B(K)), we have

([Tij]h)⊗ ([Sij]k) =


T11 T12 · · · T1n

T21 T22 · · · T2n
...

Tn1 Tn2 · · · Tnn


 ..

h1

h2
.

hn

⊗


S11 S12 · · · S1n

S21 S22 · · · S2n
...

Sn1 Sn2 · · · Snn


 ..

k1
k2
.

kn



=

 ..

T11h1 + T12h2 + · · ·+ T1nhn

T21h1 + T22h2 + · · ·+ T2nh3
.

Tn1h1 + Tn2h2 + · · ·+ Tnnhn

⊗

 ..

S11k1 + S12k2 + · · ·+ S1nkn
S21k1 + S22k2 + · · ·+ S2nk3

.

Sn1k1 + Sn2k2 + · · ·+ Snnkn



=


∑n

j=1 T1jhj∑n
j=1 T2jhj

...∑n
j=1 Tnjhj

⊗


∑n

j=1 S1jkj∑n
j=1 S2jkj

...∑n
j=1 Snjkj



=




∑n

j=1 T1jkj∑n
j=1 T2jhj

...∑n
j=1 Tnjhj

∑n
j=1 S1jkj


∑n

j=1 T1jhj∑n
j=1 T2jhj

...∑n
j=1 Tnjhj

∑n
j=1 S2jkj

...
∑n

j=1 T1jhj∑n
j=1 T2jhj

...∑n
j=1 Tnjhj

∑n
j=1 Snjkj
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=



∑n
j=1 T1jhj

∑n
j=1 S1jkj∑n

j=1 T2jhj

∑n
j=1 S1jkj

...∑n
j=1 Tnjhj

∑n
j=1 S1jkj∑n

j=1 T1jhj

∑n
j=1 S2jkj∑n

j=1 T2jhj

∑n
j=1 S2jkj

...∑n
j=1 Tnjhj

∑n
j=1 S2jkj

...∑n
j=1 T1jhj

∑n
j=1 Snjkj∑n

j=1 T2jhj

∑n
j=1 Snjkj

...∑n
j=1 Tnjhj

∑n
j=1 Snjkj



=



∑n
j=1 T1jhjS1jkj∑n
j=1 T2jhjS1jkj

...∑n
j=1 TnjhjS1jkj∑n
j=1 T1jhjS2jkj∑n
j=1 T2jhjS2jkj

...∑n
j=1 TnjhjS2jkj

...∑n
j=1 T1jhjSnjkj∑n
j=1 T2jhjSnjkj

...∑n
j=1 TnjhjSnjkj


∥([Tij]h)⊗([Sij]k)∥ =

(∑n
i,j,l=1

∥∥∥∥∑n
i,j,l=1 TijhjSljkj

∥∥∥∥2
) 1

2

≤
(∑n

i,j,l=1

∑n
i,j,l=1 ∥TijhjSljkj∥2

) 1
2

=
(∑n

i,j,l=1 ∥TijhjSljkj∥2
) 1

2 ≤
(∑n

i,j,l=1(∥Tij∥∥Slj∥∥hj∥∥kj∥)2
) 1

2
=(∑n

i,j,l=1(∥Tij∥∥Slj∥)2(∥hj∥∥kj∥)2
) 1

2
=

(∑n
i,j,l=1(∥Tij∥∥Slj∥)2

∑n
j=1(∥hj∥∥kj∥)2

) 1
2
=(∑n

i,j,l=1(∥Tij∥∥Slj∥)2
) 1

2
(∑n

j=1(∥hj∥∥kj∥)2
) 1

2
=

(∑n
i,j,l=1(∥Tij∥∥Slj∥)2

) 1
2 ∥h⊗

k∥.

If we let c =
(∑n

i,j,l=1(∥Tij∥∥Slj∥)2
) 1

2
< ∞, then we obtain ∥([Tij] ⊗

[Sij])(h ⊗ k)∥ = ∥([Tij]h) ⊗ ([Sij]k)∥ ≤
(∑n

i,j,l=1(∥Tij∥∥Slj∥)2
) 1

2 ∥h ⊗ k∥ =

c∥h⊗k∥. Thus ∥([Tij]⊗[Sij])(h⊗k)∥ ≤ c∥h⊗k∥, hence [Tij]⊗[Sij] is bounded.
We now show linearity. Let α, β be scalars and h, k ∈ h⊗ k. Then h and

7
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k are n2-dimensional elements of B(H(n)) and B(K(n)) respectively.

([Tij]⊗ [Sij])

α


h1

h2
...

hn2

+ β


k1
k2
...

kn2


 = ([Tij]⊗ [Sij])


 ..

αh1

αh2
.

αhn2

+

 ..

βk1
βk2
.

βkn2




= ([Tij]⊗ [Sij])

 ..

αh1 + βk1
αh2 + βk2

.

αhn2 + βkn2



=



T11S11 T12S11 · · · T1nS11 · · · T11S1n T12S1n · · · T1nS1n

T21S11 T22S11 T2nS11 T21S1n T22S1n T2nS1n
...

...
Tn1S11 Tn2S11 · · · TnnS11 Tn1S1n Tn2S1n · · · TnnS1n

... · · · ...
T11Sn1 T12Sn1 · · · Tn1Sn1 T11Snn T12Snn · · · T1nSnn

T21Sn1 T22Sn1 T2nSn1 T21Snn T22Snn T2nSnn
...

...
Tn1Sn1 Tn2Sn1 · · · TnnSn1 Tn1Snn Tn2Snn · · · TnnSnn



 ..

αh1 + βk1
αh2 + βk2

.

αhn2 + βkn2



=



T11S11(αh1 + βk1) T12S11(αh1 + βk1) · · · T1nS1n(αh1 + βk1)
T21S11(αh2 + βk2) T22S11(αh2 + βk2) T2nS1n(αh2 + βk2)

...
Tn1S11(αhn + βkn) Tn2S11(αhn + βkn) · · · TnnS1n(αhn + βkn)

...
Tn1Sn1(αhn2 + βkn2) Tn2Sn1(αhn2 + βkn2) · · · TnnSnn(αhn2 + βkn2)



=



T11S11(αh1) + T11S11(βk1) · · · T1nS1n(αh1) + T1nS1n(βk1)
T21S11(αh2) + T21S11(βk2) T2nS1n(αh2) + T2nS1n(βk2)

...
Tn1S11(αhn) + Tn1S11(βkn) · · · TnnS1n(αhn) + TnnS1n(βkn)

...
Tn1Sn1(αhn2) + Tn1Sn1(βkn2) · · · TnnSnn(αhn2) + TnnSnn(βkn2)



8
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=



T11S11(αh1) T12S11(αh1) · · · T1nS1n(αh1)
T21S11(αh2) T22S11(αh2) T2nS1n(αh2)

...
Tn1S11(αhn) Tn2S11(αhn) · · · TnnS1n(αhn)

...
Tn1Sn1(αhn2) Tn2Sn1(αhn2) · · · TnnSnn(αhn2)


+



T11S11(βk1) T12S11(βk1) · · · T1nS1n(βk1)
T21S11(βk2) T22S11(βk2) T2nS1n(βk2)

...
Tn1S11(βkn) Tn2S11(βkn) · · · TnnS1n(βkn)

...
Tn1Sn1(βkn2) Tn2Sn1(βkn2) · · · TnnSnn(βkn2)



= α



T11S11(h1) T12S11(h1) · · · T1nS1n(h1)
T21S11(h2) T22S11(h2) T2nS1n(h2)

...
Tn1S11(hn) Tn2S11(hn) · · · TnnS1n(hn)

...
Tn1Sn1(hn2) Tn2Sn1(hn2) · · · TnnSnn(hn2)


+

β



T11S11(k1) T12S11(k1) · · · T1nS1n(k1)
T21S11(k2) T22S11(k2) T2nS1n(k2)

...
Tn1S11(kn) Tn2S11(kn) · · · TnnS1n(kn)

...
Tn1Sn1(kn2) Tn2Sn1(kn2) · · · TnnSnn(kn2)


= α([Tij]⊗ [Sij])(h) + β([Tij]⊗ [Sij])(k)

Hence [Tij]⊗ [Sij] is linear.

Notes and Comments
Let A and B be C∗−algebras, H and K be Hilbert spaces, T = [Tij] ∈
Mn(A) ∼= Mn(B(H)) and S = [Sij] ∈ Mn(B) ∼= Mn(B(K)) then,

1. [Tij]⊗ [Sij] ∈ Mn(A)⊗Mn(B) and ∥[Tij]⊗ [Sij]∥ = ∥[Tij]∥∥[Sij]∥.

2. [Tij]⊗ [Sij] is a bounded linear operator.

9
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