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Abstract

In this paper, some coupled coincidence and common fixed point theorems for two self

mappings have been derived which satisfy certain inequality involving a function of two variables

that measures the distance between points in ordered metric spaces. For particular choices of the

function several generalizations of many fixed point theorems which contain altering distance

functions may be obtained. Our results can be applied directly to study multidimensional fixed

point theorems which cover the concepts of coupled , tripled, quadruple fixed point etc.
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1 Introduction

Fixed point theory in metric and partially ordered metric spaces has a vast literature. The theory

of fixed points has become an important tool in non-linear functional analysis. In particular, there

has been a number of works on fixed points involving altering distance functions, see for example

[3, 4, 7, 8, 13, 18, 19]. Jha et. al [9] deals with survey work on some fixed point theorems by

altering distances between points in metric spaces. In [11], Marr defined the concept of convergence

in partially ordered metric space. Also, he tried to obtain a relation between metric space and

partially ordered metric space, and claimed that the fixed point theorems in metric spaces are the

particular cases of fixed point results in partially ordered metric spaces. On the other hand, the first

result on existence of fixed points in partially ordered sets was given by Ran and Reurings [16] who

extended the Banach contraction principle in partially ordered sets and presented some applications

to linear and nonlinear matrix equations.

Definition 1.1. [11] A partially ordered space is a set X with a binary relation ≼, which satisfy

the three conditions:

(1) x ≼ x for all x ∈ X;

(2) x ≼ y and y ≼ z implies x ≼ z for all x, y, z ∈ X;

(3) x ≼ y and y ≼ x implies x = y for all x, y ∈ X.
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Definition 1.2. Let X be a nonempty set. Then (X, d,≼) is called an ordered metric space iff:

(1) (X, d) is a metric space, and

(2) (X,≼) is partially ordered.

Bhaskar and lakshmikantham [2] introduced the notion of a mixed monotone property and
a

coupled fixed point for contractive operator of the form F : X × X → X, where X is a partially

ordered set and then established some existence and uniqueness for fixed and coupled fixed points

of F (x is a fixed point of F if F (x, x) = x). They also illustrated these important results by

proving the existence and uniqueness of the solution for a periodic boundary value problem. In

[5] lakshmikantham and Ćiric extended these results by defining the mixed g-monotone proper-
ty

and proved coupled coincidence and coupled common fixed point theorems for nonlinear contractive

mappings F : X ×X → X and g : X → X in partially ordered metric spaces.

Definition1.3. [5] Let (X,≼) be a partially ordered set and F : X ×X → X and g : X → X. We

say F has the mixed g-monotone property if F is monotone g-non-decreasing in its first argument

and monotone g-non-increasing in its second argument, that is, for any x, y ∈ X,

x1, x2 ∈ X, g(x1) ≼ g(x2) implies F (x1, y) ≼ F (x2, y)

and

y1, y2 ∈ X, g(y1) ≼ g(y2) implies F (x, y1) ≽ F (x, y2).

If g is the identity mapping, we obtain the Bhaskar and lakshmikantham’s notion of a mixed mono

tone property of the mapping F .

Definition 1.4. [5] An element (x, y) ∈ X ×X is called a coupled coincidence point of a mapping

F : X ×X → X and g : X → X if

F (x, y) = g(x), F (y, x) = g(y).

Also, if g is the identity mapping, then (x, y) is called a coupled fixed point of the mapping F .

Let C(F, g) be the set of all coupled coincidence points of F and g.

Definition 1.5. Let F : X×X → X and g : X → X be two single valued mappings. The mappings

F and g are said to be weakly compatible or w− compatible if they commute at their coincidence

points, i.e., if (x, y) ∈ C(F, g) then g(F (x, y)) = F (gx, gy).

Definition 1.6. The mapping g is said to be F -weakly commuting at (x, y) ∈ X × X if g2x =

F (gx, gy) and g2y = F (gy, gx).

Delbosco [6] and Skof [20] obtained fixed point theorems for self mappings of complete metric

spaces by altering the distances between the points with the use of a function ϕ : R+

→ R+ satisfying

the following properties:

1) ϕ is continuous and increasing,

2) ϕ(t) = 0 ⇔ t = 0,

3) ϕ(t) ≥Mtµ for every t > 0, where M > 0, µ > 0 are constants.

2
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The set of all such functions ϕ is denoted by Φ. In [[20], Corol. 2] the following theorem was proved:

Theorem 1.1. [20] Let F be a self mapping of a complete metric space (X, d) and ϕ ∈ Φ such that

for every x, y ∈ X,

ϕ(d(Fx, Fy)) ≤ aϕ(d(x, y)) + bϕ(d(x, Fx)) + cϕ(d(y, Fy)), (1.1)

where, 0 ≤ a+ b+ c < 1. Then F has a unique fixed point.

Then, Khan et al. [10] generalized the above result by assuming stronger condition than (1.1)

without using definition (3) above.

Theorem 1.2. [10] Let F be a self mapping of a complete metric space (X, d) and ϕ : R+ → R+ an

increasing, continuous function satisfying property (2). Furthermore, let a, b, c be three decreasing

functions from R+ \ {0} into [0, 1) such that a(t) + 2b(t) + c(t) < 1 for every t > 0. Suppose that T

satisfies the following condition:

ϕ(d(Fx, Fy)) ≤ a(d(x, y))ϕ(d(x, y)) + b(d(x, y)){ϕ(d(x, Fx)) + ϕ(d(y, Fy))}

+ c(d(x, y))min{ϕ(d(x, Fy)), ϕ(d(y, Fx))},
(1.2)

where, x, y ∈ X and x ̸= y. Then F has a unique fixed point.

Rashwan and Sadeek [15] established a common fixed point theorem in complete metric spaces

which generalizes some results in [10]. In [[12], Corol. 2], Naidu and Visakhapatnam obtained the

following result theorems that generalize Theorem 1.2.

Theorem 1.3. [12] Let (X, d) be a metric space, F be a self mapping on X, θ : R+ → [0, 1] be

a monotonically decreasing function with θ(t) < 1 ∀t ∈ (0,∞) and ρ be a nonnegative real valued

function on X ×X with the following two properties:

(i) {ρ(xn, yn)}∞n=1 is convergent whenever {xn}∞n=1 and {yn}∞n=1 are sequences in X such that

{d(xn, yn)}∞n=1 is convergent;

(i) for any two sequences {xn}∞n=1 and {yn}∞n=1 in X, the sequence {ρ(xn, yn)}∞n=1 converges to zero

iff the sequence {d(xn, yn)}∞n=1 converges to zero.

Suppose that

ρ(Fx, Fy) ≤ θ(d(x, y))max{ρ(x, y), 1
2
[ρ(x, Fx) + ρ(y, Fy)], [ρ(x, Fy)ρ(Fx, y)]

1
2 }, (1.3)

for all x, y ∈ X. Then for any x ∈ X, {Fnx} is Cauchy. For any x0 ∈ X, the limit of {Fnx0}, if
it exists, is the unique fixed point of F .

The following lemma of Babu and Sailaja [1] will be used in the sequel.

Lemma 1.1. [1] Suppose (X, d) is a metric space, let {xn} be a sequence in X such that d(xn, xn+1) →
0 as n → ∞. If {xn} is not Cauchy sequence, then there exist an ϵ > 0 and two sequences {mk}
and {nk} of positive integers with mk > nk > k, d(xmk

, xnk
) ≥ ϵ and d(xmk−1, xnk

) < ϵ. By using

triangle inequality one can get:

d(xmk
, xnk

), d(xmk+1, xnk+1) → ϵ

and

d(xmk−1, xnk
), d(xmk

, xnk−1) → ϵ.
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Motivated by the result of Naidu and Visakhapatnam [12], we generalize Theorem 1.3 for two

single valued mappings F : X × X → X and g : X → X having the mixed monotone property

and involving generalized altering distance functions and obtain coupled coincidence and coupled

common fixed point results for these mappings in partially ordered metric space. Under special

choices of the mapping ρ we can obtain a generalization of the result of Khan et al. [10] and many

others.

2 Main Result

Throughout this paper, unless otherwise stated, N is the set of all positive integers and R+ is the

set of all nonnegative real numbers.

Theorem 2.1. Let (X, d,≼) be a partially ordered metric space, F : X × X → X be a mapping

having the g−mixed monotone property, where g : X → X, F (X × X) ⊆ g(X) and g(X) is a

complete subspace of X. Suppose that for any x, y, u, v ∈ X with gx ≼ gu and gy ≽ gv we have

ρ
(
F (x, y), F (u, v)

)
≤ 1

2

[
θ1
(
d(gx, gu)

)
+ θ2

(
d(gy, gv)

)]
max

{
ρ(gx, gu), ρ(gy, gv),

ρ
(
gx, F (x, y)

)
+ ρ

(
gu, F (u, v)

)
2

,
ρ(gy, F (y, x)

)
+ ρ

(
gv, F (v, u)

)
2

,

[
ρ(gx, F (u, v))ρ(gu, F (x, y))

] 1
2 ,
[
ρ(gy, F (v, u))ρ(gv, F (y, x))

] 1
2

}
,

(2.1)

where θ1, θ2 : R+ → [0, 1] are decreasing functions satisfying

θ1(t) + θ2(t)

{
< 1, t > 0

= 1, t = 0.

and ρ is a nonnegative real valued function on X ×X has the following properties

(i) {ρ(xn, yn)}∞n=1 is convergent whenever {xn}n∈N and {yn}n∈N are sequences in X such that

{d(xn, yn)}∞n=1 is convergent.

(ii) {ρ(xn, yn)}∞n=1 converges to ρ(x, y) whenever {xn}n∈N and {yn}n∈N are sequences in X such

that {d(xn, yn)}∞n=1 converges to d(x, y).

(iii) for any sequences {xn}n∈N and {yn}n∈N in X, the sequence {ρ(xn, yn)}n∈N converges to zero

iff the sequence {d(xn, yn)}n∈N converges to zero too.

From properties (ii) and (iii) of ρ, respectively, we note that ρ(x, y) = ρ(y, x) and ρ(x, y) = 0 iff

x = y for any x, y ∈ X.

Assume that X has the following properties:

1. if a non-decreasing sequence xn → x ∈ X, then xn ≼ x for all n;

2. if a non-increasing sequence yn → y ∈ X, then yn ≽ y for all n.

If there exist x0, y0 ∈ X such that gx0 ≼ F (x0, y0) and gy0 ≽ F (y0, x0), then F and g have a coupled

coincidence point in X, that is, there exists (x, y) ∈ X such that F (x, y) = gx and F (y, x) = gy.
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Proof. For the existence points x0, y0 ∈ X and using F (X × X) ⊆ g(X), we can find x1, y1 ∈ X

such that gx1 = F (x0, y0) and gy1 = F (y0, x0). Also for x1, y1 ∈ X there exist x2, y2 ∈ X such that

gx2 = F (x1, y1) and gy2 = F (y1, x1). Continuing in this way, we construct two sequences {gxn}n≥0

and {gyn}n≥0 in X such that

gxn+1 = F (xn, yn) and gyn+1 = F (yn, xn) ∀n ≥ 0.

Since F has the g−mixed monotone property, then gx0 ≼ F (x0, y0) and gy0 ≽ F (y0, x0) yield

gx0 ≼ gx1 and gy0 ≽ gy1

F (x0, y0) ≼ F (x1, y1) and F (y0, x0) ≽ F (y1, x1)

⇒ gx1 ≼ gx2 and gy1 ≽ gy2

.

⇒ gxn ≼ gxn+1 and gyn ≽ gyn+1 ∀n ≥ 0.

If gxn = gxn+1 and gyn = gyn+1 for some n then gxn = F (xn, yn) and gyn = F (gyn, gxn), i.e.,

(xn, yn) is a coupled coincidence point of F and g and this complete the proof. So from now on, we

assume that either gxn ̸= gxn+1 or gyn ̸= gyn+1 for all n. Since gxn−1 ≼ gxn and gyn−1 ≽ gyn,

then from (2.1), we have

ρ(gxn, gxn+1) = ρ
(
F (xn−1, yn−1), F (xn, yn)

)
≤ 1

2

[
θ1
(
d(gxn−1, gxn)

)
+ θ2

(
d(gyn−1, gyn)

)]
max

{
ρ(gxn−1, gxn), ρ(gyn−1, gyn),

ρ
(
gxn−1, F (xn−1, yn−1)

)
+ ρ

(
gxn, F (xn, yn)

)
2

,
ρ(gyn−1, F (yn−1, xn−1)

)
+ ρ

(
gyn, F (yn, xn)

)
2

,[
ρ(gxn−1, F (xn, yn))ρ(gxn, F (xn−1, yn−1))

] 1
2 ,
[
ρ(gyn−1, F (yn, xn))ρ(gyn, F (yn−1, xn−1))

] 1
2

}
≤ 1

2

[
θ1
(
d(gxn−1, gxn)

)
+ θ2

(
d(gyn−1, gyn)

)]
max

{
ρ(gxn−1, gxn), ρ(gyn−1, gyn),

ρ
(
gxn−1, gxn

)
+ ρ

(
gxn, gxn+1

)
2

,
ρ(gyn−1, gyn

)
+ ρ

(
gyn, gyn+1

)
2

,

[
ρ(gxn−1, gxn+1)ρ(gxn, gxn)

] 1
2 ,
[
ρ(gyn−1, gyn+1)ρ(gyn, gyn)

] 1
2

}
≤ 1

2

[
θ1
(
d(gxn−1, gxn)

)
+ θ2

(
d(gyn−1, gyn)

)]
max

{
ρ(gxn−1, gxn), ρ(gyn−1, gyn),

ρ
(
gxn−1, gxn

)
+ ρ

(
gxn, gxn+1

)
2

,
ρ(gyn−1, gyn

)
+ ρ

(
gyn, gyn+1

)
2

}
.

(2.2)

Similarly,

ρ(gyn+1, gyn) ≤
1

2

[
θ1
(
d(gyn, gyn−1)

)
+ θ2

(
d(gxn, gxn−1)

)]
max

{
ρ(gyn, gyn−1), ρ(gxn, gxn−1),

ρ
(
gyn, gyn+1

)
+ ρ

(
gyn−1, gyn

)
2

,
ρ(gxn, gxn+1

)
+ ρ

(
gxn−1, gxn

)
2

}
.

(2.3)
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Note that, if

max

{
ρ(gxn−1, gxn),ρ(gyn−1, gyn),

ρ
(
gxn−1, gxn

)
+ ρ

(
gxn, gxn+1

)
2

,
ρ(gyn−1, gyn

)
+ ρ

(
gyn, gyn+1

)
2

}
=
ρ
(
gxn−1, gxn

)
+ ρ

(
gxn, gxn+1

)
2

⇒ ρ(gxn−1, gxn) ≤
ρ
(
gxn−1, gxn

)
+ ρ

(
gxn, gxn+1

)
2

⇒ ρ(gxn−1, gxn) ≤ ρ(gxn, gxn+1).

But we have from (2.2) and by using the properties on θ1 and θ2

ρ(gxn, gxn+1) ≤
1

2

[
θ1
(
min{d(gxn−1, gxn), d(gyn−1, gyn)}

)
+ θ2

(
min{d(gxn−1, gxn), d(gyn−1, gyn)}

)]
ρ
(
gxn−1, gxn

)
+ ρ

(
gxn, gxn+1

)
2

⇒ ρ(gxn, gxn+1) < ρ
(
gxn−1, gxn

)
.

By a similar way, we can get antonym inequalities if we assume that

max

{
ρ(gxn−1, gxn), ρ(gyn−1, gyn),

ρ
(
gxn−1,gxn

)
+ρ

(
gxn,gxn+1

)
2 ,

ρ(gyn−1,gyn

)
+ρ

(
gyn,gyn+1

)
2

}
=

ρ
(
gyn−1,gyn

)
+ρ

(
gyn,gyn+1

)
2 .

Hence

ρ(gxn, gxn+1) ≤
1

2

[
θ1
(
min{d(gxn−1, gxn), d(yn−1, yn)}

)
+ θ2

(
min{d(gxn−1, gxn), d(yn−1, yn)}

)]
max

{
ρ(gxn−1, gxn), ρ(gyn−1, gyn)

}
ρ(gyn, gyn+1) ≤

1

2

[
θ1
(
min{d(gxn−1, gxn), d(yn−1, yn)}

)
+ θ2

(
min{d(gxn−1, gxn), d(yn−1, yn)}

)]
max

{
ρ(gxn−1, gxn), ρ(gyn−1, gyn)

}
.

That is

ρ(gxn, gxn+1) + ρ(gyn, gyn+1) ≤
[
θ1
(
min{d(gxn−1, gxn), d(yn−1, yn)}

)
+ θ2

(
min{d(gxn−1, gxn), d(yn−1, yn)}

)]
max

{
ρ(gxn−1, gxn), ρ(gyn−1, gyn)

}
ρ(gxn, gxn+1) + ρ(gyn, gyn+1) ≤

[
θ1
(
min{d(gxn−1, gxn), d(yn−1, yn)}

)
+ θ2

(
min{d(gxn−1, gxn), d(yn−1, yn)}

)][
ρ(gxn−1, gxn) + ρ(gyn−1, gyn)

]
.

(2.4)

Note that for any two real numbers a, b, max{a, b} ≤ a+ b.

Therefore, we have {ρ(gxn, gxn+1) + ρ(gyn, gyn+1)}∞n=1 is decreasing sequence of positive real

numbers bounded below by zero. Then, there is some s ≥ 0 such that

lim
n→∞

[
ρ(gxn, gxn+1) + ρ(gyn, gyn+1)

]
= s.

Now we claim that s = 0, for this purpose we assume s > 0 and discuss two cases to obtain a

contradiction.

Case(I) If one of the two equalities xn = xn−1 or yn = yn−1 holds, say xn = xn−1.

In this case we have ρ(xn, xn−1) = 0, min{d(gxn−1, gxn), d(yn−1, yn)} = zero and
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θ1
(
min{d(gxn−1, gxn), d(yn−1, yn)}

)
+ θ2

(
min{d(gxn−1, gxn), d(yn−1, yn)}

)
= 1. Then Eq.

(2.4) yields

ρ(gxn, gxn+1) + ρ(gyn, gyn+1) ≤[
θ1
(
min{d(gxn−1, gxn), d(yn−1, yn)}

)
+ θ2

(
min{d(gxn−1, gxn), d(yn−1, yn)}

)]
max

{
ρ(gxn−1, gxn), ρ(gyn−1, gyn)

}
≤ ρ(gyn−1, gyn)

≤ 1

2

[
θ1
(
min{d(gxn−2, gxn−1), d(yn−2, yn−1)}

)
+ θ2

(
min{d(gxn−2, gxn−1), d(yn−2, yn−1)}

)]
max

{
ρ(gxn−2, gxn−1), ρ(gyn−2, gyn−1)

}
≤ 1

2

[
θ1
(
min{d(gxn−2, gxn−1), d(yn−2, yn−1)}

)
+ θ2

(
min{d(gxn−2, gxn−1), d(yn−2, yn−1)}

)]
[
ρ(gxn−2, gxn−1) + ρ(gyn−2, gyn−1)

]
≤ 1

2

[
ρ(gxn−2, gxn−1) + ρ(gyn−2, gyn−1)

]
.

Taking the limit as n→ ∞ above, implies s ≤ 1
2s, which contradicts with s > 0.

Case(II) If xn ̸= xn−1 and yn ̸= yn−1, then

θ1
(
min{d(gxn−1, gxn), d(yn−1, yn)}

)
+ θ2

(
min{d(gxn−1, gxn), d(yn−1, yn)}

)
< 1

and

ρ(gxn, gxn+1) + ρ(gyn, gyn+1) < ρ(gxn−1, gxn) + ρ(gyn−1, gyn).

Again by taking limit of both sides as n→ ∞ we get a contradiction.

Therefore, s = 0 and limn→∞
[
ρ(gxn, gxn+1) + ρ(gyn, gyn+1)

]
= 0.

lim
n→∞

ρ(gxn, gxn+1) = lim
n→∞

ρ(gyn, gyn+1) = 0. (2.5)

By virtue of property (iii) of ρ, we have

lim
n→∞

d(gxn, gxn+1) = lim
n→∞

d(gyn, gyn+1) = 0. (2.6)

Now we shall show that {gxn} and {gyn} are Cauchy sequences in (X, d). Suppose the contrary,

that {gxn} and {gyn} are not Cauchy sequences. Then, Lemma 1.1 implies that there exist ϵ > 0

and two sequences {mk} and {nk} of positive integers (for all positive integer k, mk > nk) such that

d(gxmk
, gxnk

), d(gxmk+1, gxnk+1), d(gxnk
, gxmk+1), d(gxnk+1, gxmk

) → ϵ

and

d(gymk
, gynk

), d(gymk+1, gynk+1), d(gynk
, gymk+1), d(gynk+1, gymk

) → ϵ.

Using property (i) of ρ yields

ρ(gxmk
, gxnk

), ρ(gxmk+1, gxnk+1), ρ(gxnk
, gxmk+1), ρ(gxnk+1, gxmk

),

ρ(gymk
, gynk

), ρ(gymk+1, gynk+1), ρ(gynk
, gymk+1), ρ(gynk+1, gymk

) → τ > 0.
(2.7)
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Since mk ≥ nk, so gxmk
≽ gxnk

and gynk
≼ gxmk

, now we can use Eq. (2.1).

ρ(xmk+1, xnk+1) = ρ
(
F (xmk

, ymk
), F (xnk

, ynk
)
)
≤

1

2

[
θ1
(
d(gxmk

, gxnk
)
)
+ θ2

(
d(gymk

, gynk
)
)]

max

{
ρ(gxmk

, gxnk
), ρ(gymk

, gynk
),

ρ
(
gxmk

, F (xmk
, ymk

)
)
+ ρ

(
gxnk

, F (xnk
, ynk

)
)

2
,
ρ(gymk

, F (ymk
, xmk

)
)
+ ρ

(
gynk

, F (ynk
, xnk

)
)

2
,[

ρ(gxmk
, F (xnk

, ynk
))ρ(gxnk

, F (xmk
, ymk

))
] 1

2 ,
[
ρ(gymk

, F (ynk
, xnk

))ρ(gynk
, F (ymk

, xmk
))
] 1

2

}
≤ 1

2

[
θ1
(
min{d(gxmk

, gxnk
), d(gymk

, gynk
)}
)
+ θ2

(
min{d(gxmk

, gxnk
), d(gymk

, gynk
)}
)]

max

{
ρ(gxmk

, gxnk
), ρ(gymk

, gynk
),
ρ
(
gxmk

, gxmk+1

)
+ ρ

(
gxnk

, gxnk+1

)
2

,

ρ(gymk
, gymk+1

)
+ ρ

(
gynk

, gynk+1

)
2

,[
ρ(gxmk

, gxnk+1)ρ(gxnk
, gxmk+1)

] 1
2 ,
[
ρ(gymk

, gynk+1)ρ(gynk
, gymk+1)

] 1
2

}
.

(2.8)

Taking the limit superior as k tends to infinity and using ( (2.5) and (2.7)) to get

τ ≤ 1

2
lim sup
k→∞

[
θ1
(
min{d(gxmk

, gxnk
), d(gymk

, gynk
)}
)
+ θ2

(
min{d(gxmk

, gxnk
), d(gymk

, gynk
)}
)]

max{τ, τ, 0, 0, τ, τ}

τ < τ.

By a similar way we can get same inequality for {gyn}. This is a contradiction. We deduce that

{xn} and {yn} are Cauchy sequences.

Note that, θ1
(
min{d(gxmk

, gxnk
), d(gymk

, gynk
)}
)
+θ2

(
min{d(gxmk

, gxnk
), d(gymk

, gynk
)}
)
≤ 1 ∀ k ∈

N ⇒

lim sup
k→∞

[
θ1
(
min{d(gxmk

, gxnk
), d(gymk

, gynk
)}
)
+ θ2

(
min{d(gxmk

, gxnk
), d(gymk

, gynk
)}
)]

≤ 1

Since g(X) is complete, so there exist points gx and gy in g(X) such that

gxn → gx and gyn → gy as n→ ∞. (2.9)

Now we show that (x, y) is coupled coincidence point for F and g. For this purpose we shall use

(2.1) with u = xn and v = yn, then take limit superiors on both sides as n tends to infinity and use

the property (ii) of ρ.

ρ(F (x, y), gxn+1) + ρ(F (y, x), gyn+1) ≤
[
θ1
(
min{d(gx, gxn), d(gy, gyn)}

)
+ θ2

(
min{d(gx, gxn), d(gy, yn)}

)]
max

{
ρ(gx, gxn), ρ(gy, gyn),

ρ(gx, F (x, y)) + ρ(gxn, gxn+1)

2
,
ρ(gy, F (y, x)) + ρ(gyn, gyn+1)

2
,

[ρ(gx, gxn+1)ρ(gxn, F (x, y))]
2, [ρ(gy, gyn+1)ρ(gyn, F (y, x))]

2
}
,

ρ(F (x, y), gx) + ρ(F (y, x), gy) ≤ lim sup
n→∞

[
θ1
(
min{d(gx, gxn), d(gy, gyn)}

)
+ θ2

(
min{d(gx, gxn), d(gy, yn)}

)]
max

{ρ(gx, F (x, y))
2

,
ρ(gy, F (y, x))

2

}
≤ [

ρ(gx, F (x, y)) + ρ(gy, F (y, x))

2
].
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Note that, since d(F (x, y), gxn+1) → d(F (x, y), gx), then property (ii) of ρ implies

ρ(F (x, y), gxn+1) → ρ(F (x, y), gx) as n→ ∞.

From the above inequality we have ρ(F (x, y), gx)+ρ(F (y, x), gy) = 0 ⇒ ρ(F (x, y), gx) = ρ(F (y, x), gy) =

0 ⇒ F (x, y) = gx and F (x, y) = gx. Hence (x, y) is a coupled coincidence point for F and g.

Remark 2.1. We can replace the conditions on the set X by the continuity of the commutative

mappings F and g.

Indeed, g(gxn+1) = g(F (xn, yn)) = F (gxn, gyn) and g(gyn+1) = g(F (yn, xn)) = F (gyn, gxn). Tak-

ing limit at n → ∞ and using (2.9) implies, g(gx) = F (gx, gy) and g(gy) = F (gy, gx). That is

(gx, gy) is a coincidence point for F and g.

The conditions of Theorem 2.1 are not enough to prove the existence of coupled common fixed

point for the mappings F and g. We apply an additional conditions to obtain the following common

fixed point theorem.

Theorem 2.2. By adding to the hypotheses of Theorem 2.1 one of the following conditions,

(a) F and g are w−compatible, limn→∞ gnx = u and limn→∞ gny = v for some (x, y) ∈ C(F, g),

u, v ∈ X and g is continuous at u and v. Also consider that gnx ≼ gn+1x and gny ≽ gn+1y

for all n.

(b) g is F -weakly commuting for some (x, y) ∈ X ×X, g2x = gx and g2y = gy.

(c) g is continuous at (x, y) for some (x, y) ∈ C(F, g) and there exist u, v ∈ X with limn→∞ gnu = x

and limn→∞ gnv = y.

(d) g(C(F, g)) is singleton subset of C(F, g).

then F and g have a coupled common fixed point.

Proof. Suppose that (a) holds. Since Theorem 2.1 ensure the existence of at least one coupled

coincidence point for F and g, say (x, y) ∈ C(F, g), then the two limits limn→∞ gnx and limn→∞ gny

exist and equal u and v (res.), for some u, v ∈ X. By using the continuity of g at u and v, we obtain

u = lim
n→∞

gn+1x = lim
gnx→u

g(gnx) = gu (2.10)

and

v = lim
n→∞

gn+1y = lim
gny→v

g(gny) = gv. (2.11)

From F and g are w-compatible, gx = F (x, y) and gy = F (y, x), we can get

g(g(x)) = g(F (x, y)) = F (gx, gy) (2.12)

and

g(g(y)) = g(F (y, x)) = F (gy, gx).

Thus,

(gx, gy) ∈ C(F, g).
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Again by the w-compatibility of F and g and Eq. (2.12), we obtain that

g(g2x) = g(F (gx, gy)) = F (g2x, g2y).

Similarly, we have

g(g2y) = F (g2y, g2x).

So,

(g2x, g2y) ∈ C(F, g)

Continuing this process, we can get that

gnx = F (gn−1x, g
n−1y), gny = F (gn−1y, gn−1x) (2.13)

and

(gnx, gny) ∈ C(F, g) for all n ≥ 1. (2.14)

Since, {gnx} is non-decreasing sequence and gnx → u = gu ∈ X, then gnx ≼ gu ∀ n, also we have

gny ≼ gv ∀ n. Put x = gn−1x and y = gn−1y in Eq. (2.1) yields

ρ
(
gnx, F (u, v)

)
= ρ

(
F (gn−1x, gn−1y), F (u, v)

)
≤ 1

2

[
θ1
(
d(gnx, gu)

)
+ θ2

(
d(gny, gv)

)]
max

{
ρ(gnx, gu), ρ(gny, gv),

ρ
(
gnx, F (gn−1x, gn−1y)

)
+ ρ

(
gu, F (u, v)

)
2

,
ρ(gny, F (gn−1y, gn−1x)

)
+ ρ

(
gv, F (v, u)

)
2

,[
ρ(gnx, F (u, v))ρ(gu, F (gn−1x, gn−1y))

] 1
2 ,
[
ρ(gny, F (v, u))ρ(gv, F (gn−1y, gn−1x))

] 1
2

}
(2.15)

Similarly,

ρ
(
gny, F (v, u)

)
= ρ

(
F (gn−1y, gn−1x), F (v, u)

)
≤ 1

2

[
θ1
(
d(gny, gv)

)
+ θ2

(
d(gnx, gu)

)]
max

{
ρ(gny, gv), ρ(gnx, gu),

ρ
(
gny, F (gn−1y, gn−1x)

)
+ ρ

(
gv, F (v, u)

)
2

,
ρ(gnx, F (gn−1x, gn−1y)

)
+ ρ

(
gu, F (u, v)

)
2

,[
ρ(gny, F (v, u))ρ(gv, F (gn−1y, gn−1x))

] 1
2 ,
[
ρ(gnx, F (u, v))ρ(gu, F (gn−1x, gn−1y))

] 1
2

}
(2.16)

Adding Equations (2.15) and (2.16) and taking limit superior, imply

ρ
(
u, F (u, v)

)
+ ρ

(
v, F (v, u)

)
≤ lim sup

n→∞

[
θ1
(
min{d(gnx, gu), d(gny, gv)}

)
+ θ2

(
min{d(gnx, gu), d(gny, gv)}

)]
max

{
ρ(u, gu), ρ(v, gv),

0 + ρ
(
gu, F (u, v)

)
2

,
0 + ρ

(
gv, F (v, u)

)
2

,

[
ρ(u, F (u, v))ρ(gu, u))

] 1
2 ,
[
ρ(v, F (v, u))ρ(gv, v))

] 1
2

}
≤ 1

2
lim sup
n→∞

[
θ1
(
min{d(gnx, gu), d(gny, gv)}

)
+ θ2

(
min{d(gnx, gu), d(gny, gv)}

)]
max

{
0, 0, ρ

(
gv, F (v, u)

)
, ρ
(
gu, F (u, v)

)}
.
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This occurs only if ρ
(
u, F (u, v)

)
= ρ

(
v, F (v, u)

)
= 0. That is, u = F (u, v) and v = F (v, u). Hence

(u, v) is a coupled common fixed point of F and g.

Suppose that (b) holds. Then for some (x, y) ∈ X ×X, gx = g(gx) = F (gx, gy) and gy = g(gy) =

F (gy, gx). Hence (gx, gy) is a coupled common fixed point of F and g.

Suppose that (c) holds. It follows from the continuity of g at x, y that x = limn→∞ gn+1u =

limgnu→x g(g
nu) = gx = F (x, y) and y = gy = F (y, x). Hence (x, y) is a coupled common fixed

point of F and g.

Finally, suppose that (d) holds. Say C(F, g) = {(x, y), (u, v), ...}, we have g(c(F, g)) = {(gx, gy)}
and g

(
C(F, g)

)
= {(x, y)} for some (x, y) ∈ C(F, g), i.e., x = gx = F (x, y) and y = gy = F (y, x).

Hence (x, y) is a coupled common fixed point of F and g.

From Theorem 2.1, one can obtain the following corollary which is a generalization of Theorem

2 in [14].

Corollary 2.1. Let (X,≼, d) be a partially ordered metric space and F : X ×X → X be a mapping

having the g−mixed monotone property, where g : X → X and F (X ×X) ⊆ g(X). Suppose that for

any x, y, u, v ∈ X with gx ≼ gu and gy ≽ gv we have

ψ
(
d(F (x, y), F (u, v))

)
≤ a1

(
d(gx, gu)

)[
ψ
(
d(gx, gu)

)
+ c1

[
ψ
(
d(gx, F (u, v))

)
ψ
(
d(gu, F (x, y))

)] 1
2

]
+ b1

(
d(gx, gu)

)[
ψ
(
d(gx, F (x, y))

)
+ ψ

(
d(gu, F (u, v))

)]
+ a2

(
d(gy, gv)

)[
ψ
(
d(gy, gv)

)
+ c2

[
ψ
(
d(gy, F (v, u))

)
ψ
(
d(gv, F (y, x))

)] 1
2

]
+ b2

(
d(gy, gv)

)[
ψ
(
d(gy, F (y, x))

)
+ ψ

(
d(gv, F (v, u))

)]
,

(2.17)

where ψ is an altering function and ai, bi, i = 1, 2 are decreasing functions from [0,∞) into [0, 1)

such that a1(t) + a2(t) + b1(t) + b2(t) <
1
4 for every t > 0, ci are constants in [0, 1] such that

a1(t)(1 + c1) + a2(t)(1 + c2) < 1 ∀t > 0. If X has the following properties:

(i) if a non-decreasing sequence xn → x ∈ X, then xn ≼ x for all n and

(ii) if a non-increasing sequence yn → y ∈ X, then yn ≽ y for all n.

and there exist x0, y0 ∈ X such that gx0 ≼ F (x0, y0) and gy0 ≽ F (y0, x0), then F and g have

a coupled coincidence point in X, that is, there exists (x, y) ∈ X such that F (x, y) = gx and

F (y, x) = gy.

Theorem 2.3. Let (X,≼) be a partially ordered set and d be a metric on X, that is, (X,≼, d) is

an ordered metric space. Let F : X×X → X be a mapping having the g−mixed monotone property,

where g : X → X and F (X × X) ⊆ g(X). Suppose that for any x, y, u, v ∈ X with gx ≼ gu and
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gy ≽ gv we have

ψ

(
d
(
F (x, y), F (u, v)

))
≤ a1

(
d(gx, gu)

)
ψ
(
d(gx, gu)

)
+ b1

(
d(gx, gu)

)ψ(d(gx, F (x, y))+ ψ
(
d(gu, F (u, v)

)
2

+ c1
(
d(gx, gu)

)
min

{
ψ
(
d(gx, F (u, v)

)
, ψ

(
d(gu, F (x, y)

)}
+ a2

(
d(gy, gv)

)
ψ
(
d(gy, gv)

)
+ b2

(
d(gy, gv)

)ψ(d(gy, F (y, x))+ ψ
(
d(gv, F (v, u)

)
2

+ c2
(
d(gy, gv)

)
min

{
ψ
(
d(gy, F (v, u)

)
, ψ

(
d(gv, F (y, x)

)}
,

(2.18)

..

where ψ is an altering function and ai, bi, ci, i = 1, 2 are decreasing functions from [0,∞) into [0, 1)

such that a1(t) + a2(t) + b1(t) + b2(t) + c1(t) + c2(t) < 1 for every t > 0 and a1(t) + a2(t) + b1(t) +

b2(t) + c1(t) + c2(t) = 1 if t = 0. If X has the following properties:

(i) if a non-decreasing sequence xn → x ∈ X, then xn ≼ x for all n and

(ii) if a non-increasing sequence yn → y ∈ X, then yn ≽ y for all n.

and there exist x0, y0 ∈ X such that gx0 ≼ F (x0, y0) and gy0 ≽ F (y0, x0), then F and g have

a coupled coincidence point in X, that is, there exists (x, y) ∈ X such that F (x, y) = gx and

F (y, x) = gy.

Proof. For the existence points x0, y0 ∈ X and using F (X × X) ⊆ g(X), we can find x1, y1 ∈ X

such that gx1 = F (x0, y0) and gy1 = F (y0, x0). Also for x1, y1 ∈ X there exist x2, y2 ∈ X such that

gx2 = F (x1, y1) and gy2 = F (y1, x1). Continuing in this way, we construct two sequences {gxn}n≥0

and {gyn}n≥0 in X such that

gxn+1 = F (xn, yn) and gyn+1 = F (yn, xn) ∀n ≥ 0.

Since F has the g−mixed monotone property, gx0 ≼ F (x0, y0) and gy0 ≽ F (y0, x0), then we obtain

gx0 ≼ gx1 and gy0 ≽ gy1

F (x0, y0) ≼ F (x1, y1) and F (y0, x0) ≼ F (y1, x1)

⇒ gx1 ≼ gx2 and gy1 ≼ gy2

.

⇒ gxn ≼ gxn+1 and gyn ≼ gyn+1 ∀n ≥ 0.

If gxn = gxn+1 and gyn = gyn+1 for some n then gxn = F (xn, yn) and gyn = F (gyn, gxn), i.e.,

(xn, yn) is a coupled coincidence point of F and g and this complete the proof. So from now on, we

assume that either gxn ̸= gxn+1 or gyn ̸= gyn+1 for all n. Since gxn ≼ gxn+1, then from (2.18), we
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have

ψ
(
d(gxn, gxn+1)

)
= ψ

(
d
(
F (xn−1, yn−1), F (xn, yn)

))
≤ a1

(
d(gxn−1, gxn)

)
ψ
(
d(gxn−1, gxn)

)
+ b1

(
d(gxn−1, gxn)

)ψ(d(gxn−1, F (xn−1, yn−1))
)
+ ψ

(
d(gxn, F (xn, yn))

)
2

+ c1
(
d(gxn−1, gxn)

)
min

{
ψ
(
d(gxn−1, F (xn, yn))

)
, ψ

(
d(gxn, F (xn−1, yn−1))

)}
+ a2

(
d(gyn−1, gyn)

)
ψ
(
d(gyn−1, gyn)

)
+ b2

(
d(gyn−1, gyn)

)ψ(d(gyn−1, F (yn−1, xn−1))
)
+ ψ

(
d(gyn, F (yn, xn))

)
2

+ c2
(
d(gyn−1, gyn)

)
min

{
ψ
(
d(gyn−1, F (yn, xn))

)
, ψ

(
d(gyn, F (yn−1, xn−1))

)}
≤ a1

(
d(gxn−1, gxn)

)
ψ
(
d(gxn−1, gxn)

)
+ b1

(
d(gxn−1, gxn)

)ψ(d(gxn−1, gxn
)
+ ψ

(
d(gxn, gxn+1)

)
2

+ c1
(
d(gxn−1, gxn)

)
min

{
ψ
(
d(gxn−1, gxn+1)

)
, ψ

(
d(gxn, gxn)

)}
+ a2

(
d(gyn−1, gyn)

)
ψ
(
d(gyn−1, gyn)

)
+ b2

(
d(gyn−1, gyn)

)ψ(d(gyn−1, gyn)
)
+ ψ

(
d(gyn, gyn+1)

)
2

+ c2
(
d(gyn−1, gyn)

)
min

{
ψ
(
d(gyn−1, gyn+1)

)
, ψ

(
d(gyn, gyn)

)}
≤ a1

(
d(gxn−1, gxn)

)
ψ
(
d(gxn−1, gxn)

)
+ b1

(
d(gxn−1, gxn)

)ψ(d(gxn−1, gxn
)
+ ψ

(
d(gxn, gxn+1)

)
2

+ a2
(
d(gyn−1, gyn)

)
ψ
(
d(gyn−1, gyn)

)
+ b2

(
d(gyn−1, gyn)

)ψ(d(gyn−1, gyn)
)
+ ψ

(
d(gyn, gyn+1)

)
2

.

(2.19)

By a similar way we have

ψ
(
d(gyn, gyn+1)

)
≤ a1

(
d(gyn−1, gyn)

)
ψ
(
d(gyn−1, gyn)

)
+ b1

(
d(gyn−1, gyn)

)ψ(d(gyn−1, gyn
)
+ ψ

(
d(gyn, gyn+1)

)
2

+ a2
(
d(gxn−1, gxn)

)
ψ
(
d(gxn−1, gxn)

)
+ b2

(
d(gxn−1, gxn)

)ψ(d(gxn−1, gxn)
)
+ ψ

(
d(gxn, gxn+1)

)
2

.

(2.20)

Adding the two above equations (2.19) and (2.20) implies

ψ
(
d(gxn,gxn+1)

)
+ ψ

(
d(gyn, gyn+1)

)
≤

(
a1
(
d(gxn−1, gxn)

)
+ a2

(
d(gxn−1, gxn)

)
+
b1
(
d(gxn−1, gxn)

)
+ b2

(
d(gxn−1, gxn)

)
2

)
ψ
(
d(gxn−1, gxn)

)
+

(
a2
(
d(gyn−1, gyn)

)
+ a1

(
d(gyn−1, gyn)

)
+
b2
(
d(gyn−1, gyn)

)
+ b1

(
d(gyn−1, gyn)

)
2

)
ψ
(
d(gyn−1, gyn)

)
+

(
b1
(
d(gxn−1, gxn)

)
+ b2

(
d(gxn−1, gxn)

)
2

)
ψ
(
d(gxn, gxn+1)

)
+

(
b2
(
d(gyn−1, gyn)

)
+ b1

(
d(gyn−1, gyn)

)
2

)
ψ
(
d(gyn, gyn+1)

)
Consider, ρn−1 = min

{
d(gxn−1, gxn), d(gyn−1, gyn)

}
. Since, a1, a2, b1 and b2 are all decreasing
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functions, then we have

ρn−1 ≤ d(gxn−1, gxn)

≤ d(gyn−1, gyn)

⇒ a1(ρn−1) ≥ a1
(
d(gxn−1, gxn)

)
≥ a1

(
d(gyn−1, gyn)

)
.

(2.21)

The same argument can also be for a2, b1 and b2.

ψ
(
d(gxn,gxn+1)

)
+ ψ

(
d(gyn, gyn+1)

)
≤

(
a1(ρn−1) + a2(ρn−1) +

b1(ρn−1) + b2(ρn−1)

2

)
ψ
(
d(gxn−1, gxn)

)
+

(
a2(ρn−1) + a1(ρn−1) +

b2(ρn−1) + b1(ρn−1)

2

)
ψ
(
d(gyn−1, gyn)

)
+

(
b1(ρn−1) + b2(ρn−1)

2

)
ψ
(
d(gxn, gxn+1)

)
+

(
b2(ρn−1) + b1(ρn−1)

2

)
ψ
(
d(gyn, gyn+1)

)
.

Hence,

ψ
(
d(gxn,gxn+1)

)
+ ψ

(
d(gyn, gyn+1)

)
≤

(
a1(ρn−1) + a2(ρn−1) + b1(ρn−1)/2 + b2(ρn−1)/2

)
ψ
(
d(gxn−1, gxn)

)
+
(
a2(ρn−1) + a1(ρn−1) + b2(ρn−1)/2 + b1(ρn−1)/2

)
ψ
(
d(gyn−1, gyn)

)
+
(
b1(ρn−1)/2 + b2(ρn−1)/2

)[
ψ
(
d(gxn, gxn+1)

)
+ ψ

(
d(gyn, gyn+1)

)]
ψ
(
d(gxn,gxn+1)

)
+ ψ

(
d(gyn, gyn+1)

)
≤ a1(ρn−1) + a2(ρn−1) + b1(ρn−1)/2 + b2(ρn−1)/2

1− b1(ρn−1)/2− b2(ρn−1)/2
ψ
(
d(gxn−1, gxn)

)
+
a2(ρn−1) + a1(ρn−1) + b2(ρn−1)/2 + b1(ρn−1)/2

1− b1(ρn−1)/2− b2(ρn−1)/2
ψ
(
d(gyn−1, gyn)

)
.

ψ
(
d(gxn,gxn+1)

)
+ ψ

(
d(gyn, gyn+1)

)
≤ a1(ρn−1) + a2(ρn−1) + b1(ρn−1)/2 + b2(ρn−1)/2

1− b1(ρn−1)/2− b2(ρn−1)/2

[
ψ
(
d(gxn−1, gxn)

)
+ ψ

(
d(gyn−1, gyn)

)]
.

Let θ(ρn−1) =
a1(ρn−1)+a2(ρn−1)+b1(ρn−1)/2+b2(ρn−1)/2

1−b1(ρn−1)/2−b2(ρn−1)/2
< 1 and τn = ψ

(
d(gxn, gxn+1)

)
+ψ

(
d(gyn, gyn+1)

)
.

Then we have

τn ≤ θ(ρn−1)τn−1

< τn−1.
(2.22)

Note that θ(ρn−1) can not equal zero for all n. For, if θ(ρn−1) = 0 ⇒ ψ
(
d(gxn, gxn+1)

)
+

ψ
(
d(gyn, gyn+1)

)
= 0. i.e., d(gxn, gxn+1) and d(gyn, gyn+1) equal to zero, but we assumed from

before that at least one of them don’t equal zero.

That means, {τn}n≥0 is monotone decreasing. Therefore, there is some δ ≥ 0 such that

limn→∞ τn = δ. We claim that δ = 0. Taking the limit as n → ∞ of both sides of (2.22), we
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get

δ ≤ θ(ρn−1)δ

⇒ δ = 0 as 0 < θ(ρn−1) < 1.

Therefore,

lim
n→∞

τn = lim
n→∞

[
ψ
(
d(gxn, gxn+1)

)
+ ψ

(
d(gyn, gyn+1)

)]
= 0. (2.23)

By virtue of the fact that ψ is continuous and ψ(ϵ) = 0 ⇔ ϵ = 0, we have

ψ
(
lim

n→∞
d(gxn, gxn+1)

)
= lim

n→∞
ψ
(
d(gxn, gxn+1)

)
= ψ(0) = 0

⇒ lim
n→∞

d(gxn, gxn+1) = 0

and

ψ
(
lim

n→∞
d(gyn, gyn+1)

)
= lim

n→∞
ψ
(
d(gyn, gyn+1)

)
= 0

⇒ lim
n→∞

d(gyn, gyn+1) = 0.

(2.24)

Now we shall show that {gxn} and {gyn} are Cauchy sequences in (X, d). Suppose the contrary,

that {gxn} and {gyn} are not Cauchy sequences. Then, Lemma 1.1 implies that there exist ϵ > 0

and two sequences {mk} and {nk} of positive integers (with for all positive integer k, mk > nk) such

that

d(gxmk
, gxnk

), d(gxmk+1, gxnk+1), d(gymk
, gynk

), d(gymk+1, gynk+1) → ϵ (2.25)

and

lim sup
k→∞

d(gxnk
, gxmk+1), lim sup

k→∞
d(gxnk+1, gxmk

), lim sup
k→∞

d(gynk
, gymk+1), lim sup

k→∞
d(gynk+1, gymk

) ≤ ϵ.

(2.26)

Since mk ≥ nk, so gxmk
≽ gxnk

and gynk
≼ gxmk

. Also, by (2.18) we have

ψ
(
d(gxmk+1, gxnk+1)

)
= ψ

(
d
(
F (xmk

, ymk
), F (xnk

, ynk
)
))

≤ a1
(
d(gxmk

, gxnk
)
)
ψ
(
d(gxmk

, gxnk
)
)

+ b1
(
d(gxmk

, gxnk
)
)ψ(d(gxmk

, F (xmk
, ymk

))
)
+ ψ

(
d(gxnk

, F (xnk
, ynk

))
)

2

+ c1
(
d(gxmk

, gxnk
)
)
min

{
ψ
(
d(gxmk

, F (xnk
, ynk

))
)
, ψ

(
d(gxnk

, F (xmk
, ymk

))
)}

+ a2
(
d(gymk

, gynk
)
)
ψ
(
d(gymk

, gynk
)
)

+ b2
(
d(gymk

, gynk
)
)ψ(d(gymk

, F (ymk
, xmk

))
)
+ ψ

(
d(gynk

, F (ynk
, xnk

))
)

2

+ c2
(
d(gymk

, gynk
)
)
min

{
ψ
(
d(gymk

, F (ynk
, xnk

))
)
, ψ

(
d(gynk

, F (ymk
, xmk

))
)}

≤ a1
(
d(gxmk

, gxnk
)
)
ψ
(
d(gxmk

, gxnk
)
)

+ b1
(
d(gxmk

, gxnk
)
)ψ(d(gxmk

, gxmk+1

)
+ ψ

(
d(gxnk

, gxnk+1)
)

2

+ c1
(
d(gxmk

, gxnk
)
)
min

{
ψ
(
d(gxmk

, gxnk+1)
)
, ψ

(
d(gxnk

, gxmk+1)
)}

+ a2
(
d(gymk

, gynk
)
)
ψ
(
d(gymk

, gynk
)
)

+ b2
(
d(gymk

, gynk
)
)ψ(d(gymk

, gymk+1)
)
+ ψ

(
d(gynk

, gynk+1)
)

2

+ c2
(
d(gymk

, gynk
)
)
min

{
ψ
(
d(gymk

, gynk+1)
)
, ψ

(
d(gynk

, gymk+1)
)}
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ψ
(
d(gxmk+1, gxnk+1)

)
≤ a1(ρ)ψ

(
d(gxmk

, gxnk
)
)

+ b1(ρ)
ψ
(
d(gxmk

, gxmk+1

)
+ ψ

(
d(gxnk

, gxnk+1)
)

2

+ c1(ρ)min
{
ψ
(
d(gxmk

, gxnk+1)
)
, ψ

(
d(gxnk

, gxmk+1)
)}

+ a2(ρ)ψ
(
d(gymk

, gynk
)
)

+ b2(ρ)
ψ
(
d(gymk

, gymk+1)
)
+ ψ

(
d(gynk

, gynk+1)
)

2

+ c2(ρ)min
{
ψ
(
d(gymk

, gynk+1)
)
, ψ

(
d(gynk

, gymk+1)
)}
.

(2.27)

Where, ρ = min
{
d(gxmk

, gxnk
), d(gymk

, gynk
)

using ( (2.24) to (2.26)) and all properties of ψ in above, we get

}
. Taking the limit superior as k tends to infinity,

ψ(ϵ) ≤ a1(ρ)ψ(ϵ) + b1(ρ)
ψ(0) + ψ(0)

2
+ c1(ρ)min

{
ψ(ϵ), ψ(ϵ)

}
+ a2(ρ)ψ(ϵ) + b2(ρ)

ψ(0) + ψ(0)

2
+ c2(ρ)min

{
ψ(ϵ), ψ(ϵ)

}
≤

[
a1(ρ) + a2(ρ) + c1(ρ) + c2(ρ)

]
ψ(ϵ)

By a similar way we can get same inequality for {gyn}. This occurs only if ϵ = 0, this a contradiction

because we have ϵ > 0. We deduce that {gxn} and {gyn} are Cauchy sequences.

Since g(X) is complete, so there exist points gx and gy in g(X) such that

gxn → gx and gyn → gy as n→ ∞. (2.28)

Now we show that (x, y) is coupled coincidence point for F and g. Using triangle inequality and the

fact, for any sequence of real numbers {an}, α ≤ an∀n⇒ α ≤ lim infn→∞ an give

d(F (x, y), gx) ≤ d(F (x, y), gxn+1) + d(gxn+1, gx)

≤ lim inf
n→∞

[
d(F (x, y), gxn+1) + d(gxn+1, gx)

]
≤ lim sup

n→∞

[
d(F (x, y), gxn+1) + d(gxn+1, gx)

]
≤ lim sup

n→∞
d(F (x, y), gxn+1)

ψ
(
d(F (x, y), gx)

)
≤ lim sup

n→∞
ψ
(
d(F (x, y), gxn+1)

)
and

ψ
(
d(F (y, x), gy)

)
≤ lim sup

n→∞
ψ
(
d(F (y, x), gyn+1)

)
.

Hence

ψ
(
d(F (x, y), gx)

)
+ψ

(
d(F (y, x), gy)

)
≤ lim sup

n→∞
ψ
(
d(F (x, y), gxn+1)

)
+lim sup

n→∞
ψ
(
d(F (y, x), gyn+1)

)
.

(2.29)

Suppose that X has the properties (i) and (ii), i.e., {gxn} being increasing and gxn → gx for all n

implies gxn ≼ gx ∀n. Also {gyn} being decreasing and gyn → gy for all n implies gyn ≽ y ∀n. Now
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consider

ψ
(
d(F (x, y), gxn+1)

)
+ ψ

(
d(F (y, x), gyn+1)

)
≤ a1

(
d(gx, gxn)

)
ψ
(
d(gx, gxn)

)
+ b1

(
d(gx, gxn)

)ψ(d(gx, F (x, y)))+ ψ
(
d(gxn, gxn+1)

)
2

+ c1
(
d(gx, gxn)

)
min{ψ

(
d(gx, gxn+1)

)
, ψ

(
d(gxn, F (x, y))

)
}

+ a2
(
d(gy, gyn)

)
ψ
(
d(gy, gyn)

)
+ b2

(
d(gy, gyn)

)ψ(d(gy, F (y, x)))+ ψ
(
d(gyn, gyn+1)

)
2

+ c2
(
d(gy, gyn)

)
min{ψ

(
d(gy, gyn+1)

)
, ψ

(
d(gyn, F (y, x))

)
}

+ a1
(
d(gy, gyn)

)
ψ
(
d(gy, gyn)

)
+ b1

(
d(gy, gyn)

)ψ(d(gy, F (y, x)))+ ψ
(
d(gyn, gyn+1)

)
2

+ c1
(
d(gy, gyn)

)
min{ψ

(
d(gy, gyn+1)

)
, ψ

(
d(gyn, F (y, x))

)
}

+ a2
(
d(gx, gxn)

)
ψ
(
d(gx, gxn)

)
+ b2

(
d(gx, gxn)

)ψ(d(gx, F (x, y)))+ ψ
(
d(gxn, gxn+1)

)
2

+ c2
(
d(gx, gxn)

)
min{ψ

(
d(gx, gxn+1)

)
, ψ

(
d(gxn, F (x, y))

)
}

Setting ρ = min
{
d(gx, gxn), d(gy, gyn)

}
, then taking the upper limit as n tends to infinity and using

(2.24 and 2.26) with the continuity of ψ and ψ(0) = 0 give us

lim sup
n→∞

ψ
(
d(F (x, y), gxn+1)

)
+ lim sup

n→∞
ψ
(
d(F (y, x), gyn+1)

)
≤

lim sup
n→∞

b1
(
d(gx, gxn)

)ψ(d(gx, F (x, y)))
2

+ lim sup
n→∞

b2
(
d(gy, gyn)

)ψ(d(gy, F (y, x)))
2

+ lim sup
n→∞

b1
(
d(gy, gyn)

)ψ(d(gy, F (y, x)))
2

+ lim sup
n→∞

b2
(
d(gx, gxn)

)ψ(d(gx, F (x, y)))
2

≤ lim sup
n→∞

[
b1
(
d(gx, gxn)

)
+ b2

(
d(gx, gxn)

)
2

]
ψ
(
d(gx, F (x, y))

)
+ lim sup

n→∞

[
b1
(
d(gy, gyn)

)
+ b2

(
d(gy, gyn)

)
2

]
ψ
(
d(gy, F (y, x))

)
By using (2.29) with the help of, for any sequence of real numbers {an}, an ≤ α∀n⇒ lim supn→∞ an ≤
α we have

b1
(
d(gx, gxn)

)
+ b2

(
d(gx, gxn)

)
2

≤ b1(ρ) + b2(ρ)

2

lim sup
n→∞

b1
(
d(gx, gxn)

)
+ b2

(
d(gx, gxn)

)
2

≤ b1(ρ) + b2(ρ)

2
.

(2.30)

and

ψ
(
d(F (x, y), gx)

)
+ ψ

(
d(F (y, x), gy)

)
≤ b1(ρ) + b2(ρ)

2

[
ψ
(
d(gx, F (x, y))

)
+ ψ

(
d(gy, F (y, x))

)]
This shows that ψ

(
d(F (x, y), gx)

)
+ψ

(
d(F (y, x), gy)

)
= 0 ⇒ ψ

(
d(F (x, y), gx)

)
= ψ

(
d(F (y, x), gy)

)
=

0 ⇒ d(F (x, y), gx) = d(F (y, x), gy) = 0 ⇒ F (x, y) = gx and F (y, x) = gy. Hence (x, y) is a coupled

coincidence point for F and g.

If we consider a1(t) + a2(t) + b1(t) + b2(t) + c1(t) + c2(t) <
1
2 for every t > 0 in Theorem 2.3, we

get the following remark.
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Remark 2.2. We can prove Theorem 2.3 by another way, directly from Theorem 2.1 as follows

Proof. Let ψ ◦ d in Theorem 2.3 equal ρ. Define θ1, θ2 : R+ → [0, 1] as θ1(t) = a1(t) + b1(t) + c1(t)

and θ2(t) = a2(t) + b2(t) + c2(t) if t > 0 and θ1(0) + θ2(0) = 1. Then ρ is a nonnegative real valued

function on X×X having properties (i) to (iii) as in Theorem 2.1 and θ1, θ2 are decreasing functions

on R+ with θ1(t) + θ2(t) < 1 for all t > 0. Under this considerations, contraction condition (2.18)

yields to

ψ
(
d(F (x, y), F (u, v))

)
≤

[
a1(d(gx, gu)) + b1(d(gx, gu)) + c1(d(gx, gu))

]
max

{
ψ
(
d(gx, gu)

)
,
ψ
(
d(gx, F (x, y))

)
+ ψ

(
d(gu, F (u, v))

)
2

,

min
{
ψ
(
d(gx, F (u, v))

)
, ψ

(
d(gu, F (x, y))

)}}
+
[
a2(d(gy, gv)) + b2(d(gy, gv)) + c2(d(gy, gv))]

max ψ

{ (
d(gy, gv)

)
,
ψ
(
d(gy, F (y, x))

)
+ ψ

(
d(gv, F (v, u))

)
2

,

min
{
ψ
(
d(gy, F (v, u))

)
, ψ

(
d(gv, F (y, x)

)}}

ρ
(
F (x, y), F (u, v)

)
≤ 1

2
θ1
(
d(gx, gu)

)
max

{
ρ(gx, gu),

ρ(gx, F (x, y)) + ρ(gu, F (u, v))

2
,

min
{
ρ(gx, F (u, v)), ρ(gu, F (x, y))

}}
+

1

2
θ2
(
d(gy, gv)

)
max

{
ρ(gy, gv),

ρ(gy, F (y, x)) + ρ(gv, F (v, u))

2
,

min
{
ρ(gy, F (v, u)), ρ(gv, F (y, x))

}}
≤ 1

2

[
θ1
(
d(gx, gu)

)
+ θ2

(
d(gy, gv)

)]
max

{
ρ(gx, gu),

ρ(gx, F (x, y)) + ρ(gu, F (u, v))

2
,min

{
ρ(gx, F (u, v)), ρ(gu, F (x, y))

}
,

ρ(gy, gv)),
ρ(gy, F (y, x)) + ρ(gv, F (v, u))

2
,min

{
ρ(gy, F (v, u)), ρ(gv, F (y, x))

}}
≤ 1

2

[
θ1(d(gx, gu)) + θ2(d(gy, gv))

]
max

{
ρ(gx, gu), ρ(gy, gv)),

ρ(gx, F (x, y)) + ρ(gu, F (u, v))

2
,
ρ(gy, F (y, x)) + ρ(gv, F (v, u))

2
,

[
ρ(gx, F (u, v)), ρ(gu, F (x, y))

] 1
2 ,
[
ρ(gy, F (v, u)), ρ(gv, F (y, x))

] 1
2

}
.

All conditions of Theorem 2.1 hold, then Theorem 2.3 follows from Theorem 2.1.

Here, we derive some consequences for Theorem 2.1.

Corollary 2.2. The result of Theorem 2.3 remains valid even If we assume that the functions ai, bi

and ci, i = 1, 2 are increasing instead of decreasing.

Proof. The proof of this corollary is same as that one of Theorem 2.3 under some changes. If we

consider ρn−1 in Equation (2.21) as

ρn−1 = max{d(gxn−1, gxn), d(gyn−1, gyn)}
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Therefore, we have

ρn−1 ≥ d(gxn−1, gxn)

≥ d(gyn−1, gyn)

⇒ a1(ρn−1) ≥ a1
(
d(gxn−1, gxn)

)
≥ a1

(
d(gyn−1, gyn)

)
.

Doing the same argument for ρ in Equations (2.27) and (2.30) and complete the proof as in Theorem

2.3 implies same result.

Now, a consequence of Theorem 2.3 by taking F (x, y) = fx where f : X → X, is the following

corollary which is the ordered version of Khan et al.’s Theorem 1.2.

Corollary 2.3. Let (X,≼) be a partially ordered set and suppose that there exists a metric d on X

such that (X, d) is a complete metric space. Let f : X → X be a nondecreasing given mapping such

that

ψ
(
d(fx, fu)

)
≤ a

(
d(x, u)

)
ψ
(
d(x, u)

)
+ b

(
d(x, u)

)ψ(d(x, fx)+ ψ
(
d(u, fu

)
2

+ c
(
d(x, u)

)
min

{
ψ
(
d(x, fu

)
, ψ

(
d(u, fx

)}
,

(2.31)

for x, y ∈ X with x ≼ u, where ψ is an altering function and a, b, c are decreasing functions from

[0,∞) into [0, 1) such that a(t) + b(t) + c(t) < 1 for every t > 0. Assume either f is continuous or

X has the following property, if a nondecreasing sequence xn → x ∈ X, then xn ≼ x for all n. If

there exists x0 ∈ X such that x0 ≼ f(x0), then f has a unique fixed point.
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