

Volume 5, No.4, April 2018 Journal of Global Research in Mathematical Archives UGC Approved Journal RESEARCH PAPER

Available online at http://www.jgrma.info

ON SOME RELATIONS CONNECTING FLUID DYNAMICS AND BI-COMPLEX ANALYSIS

Sanjib Kumar Datta¹,Sudipta Kumar Pal²and Satavisha Dey³

 ^{1&2}Department of Mathematics, University of Kalyani, P.O.-Kalyani, Dist.-Nadia, PIN-741213 West Bengal, India.
 Email-id: sanjibdatta05@gmail.com, sudipta.pal07@yahoo.com.
 ³Department of Mathematics Bijoy Krishna Girls' College M.G. Road, Howrah-711101 West Bengal, India. Email id: itzmesata@gmail.com.

Abstract: In the paper our main target is to derive some results focusing some connection between fluid dynamics and bi-complex analysis which in fact is the most recent mathematical tool to develop the theory of complex analysis.

AMS Subject Classification (2010): 30D30,30D35, 76A02.

Keywords and Phrases: Potential fluid flow, Ψ -order (Ψ -lower order), Ψ - zero order (Ψ -zero lower order), bicomplex number, bicomplex potential, composition, growth indicators, idempotent representation, factorization.

1 INTRODUCTION, DEFINITIONS AND NOTATIONS.

The most recent advancement of the theory of complex numbers lies in the progress of bi-complex analysis. According to Segree [9], a bi-complex number ξ is defined as follows:

$$\xi = x_0 + i_1 x_1 + i_2 x_2 + i_1 i_2 x_3$$

where x_0, x_1, x_2 and x_3 are real numbers with $i_1^2 = i_2^2 = -1$ and $i_1 i_2 = i_2 i_1$.

The set of all bi-complex numbers is generally denoted by C_2 . In the theory of bi-complex numbers, the sets of real numbers and complex numbers are generally denoted by C_0 and C_1 respectively. Thus

 $C_2 = \{\xi : \xi = x_0 + i_1 x_1 + i_2 x_2 + i_1 i_2 x_3 ; x_0, x_1, x_2, x_3 \in C_0\}.$

Equivalently, we may write $C_2 = \{\xi : \xi = z_1 + i_2 z_2 ; z_1 z_2 \in C_1\}.$

We have seen some illuminating works on the recent advancement of different aspect of bi-complex analysis in Michiji Futagawa [2], E. Hille [3], D. Riley [4], G. Baley Price [1]. In the present paper we would like to establish some results in fluid dynamics in close- connection to bi-complex analysis. In fact, the paper is an improved version of Datta and Sen [15] and therefore all the preliminary theories and definitions on bi-complex analysis as required here are omitted.

Now, let us define a function as follows:

Let $\Psi: [0, \infty) \to (0, \infty)$ be a non-decreasing unbounded function, satisfying the following two conditions:

(*i*)
$$\lim_{r \to \infty} \frac{\log^{[p]}(r)}{\log^{[q]}[\Psi(r)]} = 1$$

and

$$(ii)\lim_{r\to\infty}\frac{\log^{[q]}(\alpha r)}{\log^{[q]}\Psi[(r)]}=1,$$

for some $\alpha > 1$ and *p*, *q* are any two posotive integers.

With the help of function Ψ as defined earlier the following definitions may be given :

Definition 1. The Ψ –order $\rho_{(F,\Psi)}$ of a bicomplex meromorphic function $F(w) = F_{e_1}(z_1 - i_1 z_2)e_1 + (z_1 + i_1 z_2)e_2$

$$\rho_{(F,\Psi)} = max\left\{\rho_{(F_{e_1,\Psi})}, \rho_{(F_{e_2,\Psi})}\right\}$$

where

is defined as

$$\rho_{F_{e_i},\Psi} = \limsup_{r_i \to \infty} \frac{\log \log M_i(r_i, F_{e_i})}{\log[\Psi(r_i)]} for \ i = 1,2$$

Remark 1. The Ψ –lower order $\lambda_{(F,\Psi)}$ of a bicomplex meromorphic function is defined as

$$\lambda_{(F,\Psi)} = \min\left\{\lambda_{(F_{e_1,\Psi})}, \lambda_{(F_{e_2,\Psi})}\right\},\,$$

where

$$\lambda_{(F_{e_i},\Psi)} = \liminf_{r_i \to \infty} \frac{\log \log M_i(r_i, F_{e_i})}{\log [\Psi(r_i)]} \text{ for } i = 1,2.$$

Remark 2. The Ψ -hyper order $\bar{\rho}_{(F,\Psi)}(\Psi$ -hyper lower order $\bar{\lambda}_{(F,\Psi)})$ and the generalized Ψ -order $\rho_{(F,\Psi)}^{(k)}$ (generalized Ψ -lower order $\lambda_{(F,\Psi)}^{(k)}$) can also be defined in a similar way.

Definition 2. The Ψ -type of F $\sigma_{(F,\Psi)}$ of a bicomplex meromorphic function is defined as

$$\sigma_{(F,\Psi)} = max\left\{\sigma_{(F_{e_1,\Psi})}, \sigma_{(F_{e_2,\Psi})}\right\}$$

where

$$\sigma_{(F_{e_i},\Psi)} = \text{limsup}_{r_i \to \infty} \frac{\log M_i(r_i, F_{e_i}, \Psi)}{\Psi(r_i^{\sigma(F_{e_i},\Psi)})} \text{ and } 0 < \rho_{(F_{e_i},\Psi)} < \infty \text{ for } i = 1,2$$

Definition 3. Let F(w) be an entire function of Ψ –order zero. Then the quantities $\rho_{(F,\Psi)}^*$ and $\lambda_{(F,\Psi)}^*$ can be defined as

$$\rho_{(F,\Psi)}^{*} = max \left\{ \rho_{(F_{e_{1}},\Psi)}^{*}, \rho_{(F_{e_{2}},\Psi)}^{*} \right\}$$
and
$$\lambda_{(F,\Psi)}^{*} = min \left\{ \lambda_{(F_{e_{1}},\Psi)}^{*}, \lambda_{(F_{e_{2}},\Psi)}^{*} \right\}$$
where
$$\rho_{(F_{e_{i},\Psi)}}^{*} = \limsup_{r_{i} \to \infty} \frac{loglogM_{i}(r_{i}, F_{e_{i}})}{loglog[\Psi(r_{i})]}$$
and
$$\lambda_{F_{e_{i}}}^{*} = \liminf_{r_{i} \to \infty} \frac{loglogM_{i}(r_{i}, F_{e_{i}})}{loglog[\Psi(r_{i})]} for i = 1,2.$$

Definition 4.Let F(w) be an entire function order zero. Then the quantities $\rho_{(F,\Psi)}^{**}$ and $\lambda_{(F,\Psi)}^{**}$ can be defined as

$$\rho_{(F,\Psi)}^{**} = max \left\{ \rho_{(F_{e_1},\Psi)}^{**}, \rho_{(F_{e_2},\Psi)}^{**} \right\} and$$

$$\lambda_{(F,\Psi)}^{**} = min \left\{ \lambda_{(F_{e_1},\Psi)}^{**}, \lambda_{(F_{e_2},\Psi)}^{**} \right\} where$$

$$\rho_{F_{e_i}}^{**} = \limsup_{r_i \to \infty} \frac{\log M_i(r_i, F_{e_i})}{\log [\Psi(r_i)]} and \lambda_{F_{e_i}}^{**} = \liminf_{r_i \to \infty} \frac{\log M_i(r_i, F_{e_i})}{\log [\Psi(r_i)]} for \ i = 1, 2.$$

Definition 5. (Factorization of F(w)) Let F(w) be a bicomplex meromorphic function on $T \subset C_2$. Then F is said to have f and g as left and right factors respectively if Fei has fei and gei as left and right factors respectively for i=1,2, i.e., f_{ei} is meromorphic and g_{ei} is entire for i=1,2.

Definition 6. (Complex potential flow) If $f(z) = u(x, y) + iv(x, y) \in C_1$ be a complex function where $u(x, y) \in R^2$ and $v(x, y) \in R^2$ satisfy the Cauchy-Riemann equations, i.e., $\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$, $\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$ and Laplace's equation, i.e., $\frac{\partial_u^2}{\partial x^2} + \frac{\partial_u^2}{\partial y^2} = 0$, then f(z) can be termed as a complex potential fluid flow.

Definition 7.(Bicomplex potential fluid flow) If $f(w) = f(z_1 + i_2 z_2) = f_{e_1}(z_1 - i_1 z_2)e_1 + f_{e_2}(z_1 + i_1 z_2 e_2)e_1$ be the idempotent composition of two complex functions, with $f_{e_1}(z_1 - i_1 z_2) = u(z_1, z_2) - i_1 v(z_1 - z_2) \in C_1$ and $f_{e_2}(z_1 - i_1 z_2) = u(z_1, z_2) + i_1 v(z_1, z_2) \in C_1$ where $u(z_1, z_2)$ and $v(z_1, z_2)$ satisfy Cauchy-Riemann equations and Laplace's equation, i.e., $\frac{\partial u}{\partial z_1} = \frac{\partial v}{\partial z_2}, \frac{\partial u}{\partial z_2} = \frac{\partial v}{\partial z_2}$ $-\frac{\partial v}{\partial z_2} \text{ and } \frac{\partial_u^2}{\partial z_1^2} + \frac{\partial_v^2}{\partial z_2^2} = 0, \\ \frac{\partial_u^2}{\partial z_1^2} + \frac{\partial_v^2}{\partial z_2^2} = 0, \text{ therefore } f_{e_1}(z_1 - i_1 z_2) \text{ and } f_{e_2}(z_1 + i_1 z_2) \text{ can be termed as complex}$ potential fluid flows. So, f(w) can be termed as a composition of two different potential fluid flows f_{e_1} and $\begin{array}{c} f_{e_2} \\ \mathbf{3} \end{array} \mathbf{LEMMA.} \end{array}$

In this section we present some lemmas which will be needed in the sequel.

Lemma 1 [8] [15]. If f(z) = u(x, y) + iv(x, y) be complex potential fluid flow defined in the region $\{y > 0\}$ satisfying the following properties :

- (i) f(z) is continuously differentiable in the region $\{y \ge 0\}$,
- f'(z) is parallel to the x-axis when y = 0 and (ii)
- f'(z) is uniformly bounded in $\{y > 0\}$, then the order and lower order of f(z) are zero. (iii)

Corollary 1. If $f(w) = f(z_1 + i_2 z_2) = f_{e_1}(z_1 - i_1 z_2)e_1 + f_{e_2}(z_1 + i_1 z_2)e_2$ be an idempotent composition of two complex potential fluid flows satisfying the following properties :

- (i)
- (ii)
- f_{e_1} and f_{e_2} are continuously differentiable in the region $\{y \ge 0\}$ f_{e_1}' and f_{e_2}' are parallel to the *x*-axis when y = 0 and f_{e_1}' and f_{e_2}' are uniformly bounded in $\{y > 0\}$, then the order and lower order of f(w) are zero. (iii)

Lemma 2 [14]. If f(z) and g(z) are any two entire functions, then for all sufficiently large values of r,

$$M\left(\frac{1}{8}M\left(\frac{r}{2},g\right) - |g(0),f|\right) \le M(r,fog) \le M(M(r,g),f).$$

Lemma 3[14]. If f be entire and g be a transcendental entire function of finite lower order, then for any $\delta > 0$,

$$M(r^{1+\delta}, fog) \ge M(M(r, g), f). \qquad (r \ge r_0)$$

© JGRMA 2018, All Rights Reserved

Lemma 4 [13]. If F has f and gas left and right factors, then we always have the following factorization :

$$F(w) = f(g(w)).$$

THEOREMS. 4

In this section we present our main results of the paper.

Theorem 1. If $f(w) = f(z_1 + i_2 z_2) = f_{e_1}(z_1 - i_1 z_2)e_1 + f_{e_2}(z_1 + i_1 z_2)e_2$ be an idempotent composition of two complex potential fluid flows f_{e_1} and f_{e_2} satisfying the following properties :

- f_{e_1} and f_{e_2} are continuously differentiable in the region $\{y \ge 0\}$ (i)
- $f_{e_1}^{\prime}$ and $f_{e_2}^{\prime}$ are parallel to x-axis when y = 0 and $f_{e_1}^{\prime}$ and $f_{e_2}^{\prime}$ are uniformly bounded in $\{y > 0\}$, (ii)
- (iii)

then
$$ho_{f}^{'}=1$$
 and $\lambda_{f}^{'}=1.$

Proof. From the definitions of $\rho_{f,\psi}^{**}$ and $\lambda_{f,\psi}^{**}$ and using Definition 4, we have for arbitrary positive ε_1 , ε_2 and all sufficiently large values of r_1, r_2

$$\begin{split} \log M_1(r_1, f_{e_1}) &\leq \left(\rho_{(f_{e_1}, \Psi)}^{**} + \varepsilon_1\right) \log [\Psi(r_1)] \text{and} \\ \log M_2(r_2, f_{e_2}) &\leq \left(\rho_{(f_{e_2}, \Psi)}^{**} + \varepsilon_2\right) \log [\Psi(r_2)] \\ \text{Therefore, } \log \log M_1(r_1, f_{e_1}) &\leq \log \log [\Psi(r_1)] + O(1) \\ \text{and} \quad \log \log M_2(r_2, f_{e_2}) &\leq \log \log [\Psi(r_2)] + O(1) \\ \text{i.e.,} \frac{\log \log M_1(r_1, f_{e_1})}{\log \log [\Psi(r_1)]} &\leq \frac{\log \log [\Psi(r_1)] + O(1)}{\log \log [\Psi(r_1)]} \text{ and} \\ \frac{\log \log M_2(r_2, f_{e_2})}{\log \log r_2} &\leq \frac{\log \log [\Psi(r_2)] + O(1)}{\log \log [\Psi(r_2)]} \\ \text{i.e.,} \lim_{r_1 \to \infty} \frac{\log \log M_1(r_1, f_{e_1})}{\log \log [\Psi(r_1)]} &\leq 1 \text{ and} \lim_{r_2 \to \infty} \frac{\log \log M_2(r_2, f_{e_2})}{\log \log [\Psi(r_2)]} \leq 1 \end{split}$$

i.e., $\rho_{f_{e_1},\psi}^* \leq 1$ and $\rho_{f_{e_2},\psi}^* \leq 1$ and therefore using Definition 3,

we have
$$\rho_{f,\Psi}^* \le 1.$$
 (1)

Similarly, proceeding as above and using Definition 3,

we have
$$\lambda_{f,\Psi}^* \leq 1.$$
 (2)

Again, for arbitrary positive $\varepsilon_1, \varepsilon_2$ and all sufficiently large values of r_1, r_2 we have

$$log M_1(r_1, f_{e_1}) \ge \left(\lambda_{(f_{e_1}, \Psi)}^{**} - \varepsilon_1\right) \log[\Psi(r_1)]$$

and $log M_2(r_2, f_{e_2}) \ge \left(\lambda_{(f_{e_2}, \Psi)}^{**} - \varepsilon_2\right) log[\Psi(r_2)]$
Therefore, $log log M_1(r_1, f_{e_1}) \ge log log[\Psi(r_1)] + O(1)$

and $log log M_2(r_2, f_{e_2}) \ge log log [\Psi(r_2)] + O(1)$

i.e.,
$$\frac{\log \log M_1(r_1, f_{e_1})}{\log \log [\Psi(r_1)]} \ge \frac{\log \log [\Psi(r_1)] + O(1)}{\log \log [\Psi(r_1)]}$$

and

$$\frac{\log\log M_2(r_2, f_{e_2})}{\log\log[\Psi(r_2)]} \ge \frac{\log\log[\Psi(r_2)] + O(1)}{\log\log[\Psi(r_2)]}$$
$$i.e., \limsup_{r_1 \to \infty} \frac{\log\log M_1(r_1, f_{e_1})}{\log\log[\Psi(r_1)]} \ge 1$$
$$and \limsup_{r_2 \to \infty} \frac{\log\log M_2(r_2, f_{e_2})}{\log\log[\Psi(r_2)]} \ge 1$$

i.e., $\rho^*_{(f_{e_1}, \Psi)} \ge 1$ and $\rho^*_{(f_{e_2}, \Psi)} \ge 1$ and therefore using Definition 3,

we have
$$\rho_{f,\Psi}^* \ge 1.$$
 (3)

Similarly, proceeding as above and using Definition 3,

we have
$$\lambda_{f,\Psi}^* \ge 1.$$
 (4)

From (1) and (3) we have $\rho_{f,\Psi}^* = 1$ and from (2) and (4) we have $\lambda_{f,\Psi}^* = 1$.

Thus the theorem follows.

Example 1. Let $f(w) = w = z_1 + i_2 z_2 = (z_1 - i_1 z_2)e_1 + (z_1 + i_1 z_2)e_2 \in C_2$ (bicomplex space) be a bicomplex potential fluid flow in C₂.

Therefore, $f_{e_1} = z_1 - i_1 z_2 \in C_1$ (or *C*) and $f_{e_2} = z_1 + i_1 z_2 \in C_1$ (or *C*)

Therefore,
$$\rho_{f_{e_1},\Psi} = \limsup_{r_1 \to \infty} \frac{\log \log M_1(r_1, f_{e_1})}{\log [\Psi(r_1)]} = 0 \text{ as } M_1(r_1, f_{e_1}) \le |z_1 - i_1 z_2| \le r_1 + r_2$$

and $\rho_{(f_{e_2},\Psi)} = \limsup_{r_2 \to \infty} \frac{\log \log M_2(r_2, f_{e_2})}{\log [\Psi(r_2)]} = 0 \text{ as } M_2(r_2, f_{e_2}) \le |z_1 + i_1 z_2| \le r_1 + r_2$

Hence $\rho_{f,\Psi}^* = 0$ and similarly $\lambda_{f,\Psi}^* = 0$.

$$\rho_{(f_{e_1},\Psi)}^* = \limsup_{r_1 \to \infty} \frac{\log \log M_1(r_1, f_{e_1})}{\log \log [\Psi(r_1)]} = \limsup_{r_2 \to \infty} \frac{\log \log (r_1 + r_2)}{\log \log [\Psi(r_1)]} = 1, r_1 \text{ is fixed.}$$

And $\rho_{(f_{e_2},\Psi)}^* = \limsup_{r_2 \to \infty} \frac{\log \log M_2(r_2, f_{e_2})}{\log \log [\Psi(r_2)]} = \limsup_{r_2 \to \infty} \frac{\log \log (r_1 + r_2)}{\log \log [\Psi(r_2)]} = 1, r_2 \text{ is fixed.}$

Therefore, $\rho_{f,\Psi}^* = 1$ and similarly $\lambda_{f,\Psi}^* = 1$.

Similarly, we can also show that $\rho_{f,\Psi}^{**} = 1$ and $\lambda_{f,\Psi}^{**} = 1$.

Theorem 2. Let f(w) and g(w) be any two bicomplex potential fluid flows satisfying the following properties :

- f_{e_1} , f_{e_2} are continuously differentiable in the region $\{y \ge 0\}$ (i)
- (ii)
- $f_{e_1}^{'}, f_{e_2}^{'}$ are parallel to the *x*-axis when y = 0 $f_{e_1}^{'}, f_{e_2}^{'}$ are uniformly bounded in $\{y > 0\}$, such that $\rho_f = 0$ and $\lambda_f < \infty$. (iii)

Then $\rho_{f,\Psi} = \rho_{g,\Psi}$.

Proof. Using Lemma 4, we can say that F(w) can be factorized to f(g(w)). Now, using Lemma 2 and Theorem 1 we have

$$\begin{split} \rho_{(F_{e_1},\Psi)} &= \rho_{\{(f_{e_1} \circ g_{e_1}),\Psi\}} = \limsup_{r_1 \to \infty} \frac{\log \log M_1(r_1, f_{e_1} \circ g_{e_1})}{\log [\Psi(r_1)]} \\ &\leq \limsup_{r_1 \to \infty} \frac{\log \log M(M(r_1, g_{e_1}), f_{e_1})}{\log \log M(r_1, g)} \cdot \limsup_{r_1 \to \infty} \frac{\log \log M(r_1, g_{e_1})}{\log [\Psi(r_1)]} \\ &\leq \rho_{(f_{e_1},\Psi)}^* \cdot \rho_{(g_{e_1},\Psi)} = 1 \cdot \rho_{(g_{e_1},\Psi)} = \rho_{g_{(e_1,\Psi)}} \end{split}$$

Similarly,

$$\rho_{(F_{e_2},\Psi)} \leq \rho_{(g_{e_2},\Psi)}.$$

Therefore

$$\rho_{F,\Psi} = \rho_{\{(f \circ g),\Psi\}} \le \max\left\{\rho_{(g_{e_1},\Psi)}, \rho_{(g_{e_2},\Psi)}\right\} = \rho_{g,\Psi},$$

i.e., $\rho_{F,\Psi} \le \rho_{g,\Psi}.$ (5)

Now using Lemma 3 and Theorem 1, we have

$$\rho_{(F_{e_1},\Psi)} = \rho_{\{(f_{e_1} \circ g_{e_1}),\Psi\}} = \limsup_{r_1 \to \infty} \frac{\log \log M_1(r_1^{1+\delta}, f_{e_1} \circ g_{e_1})}{\log \mathbb{E} \Psi(r_1^{1+\delta})}$$

$$\geq \liminf_{r_1 \to \infty} \frac{\log \log M(M(r_1, g_{e_1}), f_{e_1})}{\log \log M(r_1, g_{e_1})} \cdot \limsup_{r_1 \to \infty} \frac{\log \log M(r_1, g_{e_1})}{\log \mathbb{E} \Psi(r_1)]}$$

$$\geq \lambda^*_{(f_{e_1},\Psi)} \cdot \rho_{(g_{e_1},\Psi)} = 1 \cdot \rho_{(g_{e_1},\Psi)} = \rho_{(g_{e_1},\Psi)}$$

Similarly, $\rho_{(F_{e_2}, \Psi)} \ge \rho_{(g_{e_2}, \Psi)}$.

Therefore

$$\rho_{F,\Psi} = \rho_{\{(f \circ g),\Psi\}} \ge \max\left\{\rho_{(g_{e_1},\Psi)}, \rho_{(g_{e_2},\Psi)}\right\} = \rho_{g,\Psi},$$

i.e., $\rho_{F,\Psi} \ge \rho_{g,\Psi}.$ (6)

Therefore from (5) and (6), the result follows.

Theorem 3. Let f(w) and g(w) be any two bicomplex potential fluid flows satisfying the following properties :

(i) f(w) is entire and g(w) is transcendental such that $\rho_{fog} = 0$ and $\lambda_g < \infty$.

Then $\rho_{f,\Psi}^{**}\lambda_{g,\Psi}^{**} \le \rho_{(f \circ g),\Psi}^{**} \le \rho_{f,\Psi}^{**}\rho_{g,\Psi}^{**}$.

Proof. Using Lemma 3 we have

$$\begin{split} \rho_{(F_{e_{1},\Psi})}^{**} &= \rho_{\{(f_{e_{1}} \circ g_{e_{1}}),\Psi\}}^{**} = \limsup_{r_{1} \to \infty} \frac{\log M_{1}(r_{1}^{1+\delta}, f_{e_{1}} \circ g_{e_{1}})}{\log [\Psi(r_{1}^{1+\delta})} \\ &\geq \limsup_{r_{1} \to \infty} \frac{\log M_{1}(M_{1}(r_{1}, g_{e_{1}}), f_{e_{1}})}{\log M_{1}(r_{1}, g)} \cdot \liminf_{r_{1} \to \infty} \frac{\log M_{1}(r_{1}, g_{e_{1}})}{\log [\Psi(r_{1})} \\ &= \rho_{f_{e_{1}}}^{**} \lambda_{g_{e_{1}}}^{**}. \end{split}$$

Similarly,

$$\rho_{(F_{e_2},\psi)}^{**} = \rho_{\{(f_{e_2} \circ g_{e_2}),\psi\}}^{**} \ge \rho_{(f_{e_2},\psi)}^{**} \cdot \lambda_{(g_{e_2},\psi)}^{**}$$

Therefore

$$\rho_{fog,\Psi}^{**} = max\left\{\rho_{\{(f_{e_1},\Psi)o(g_{e_1},\Psi)\}}^{**}, \rho_{\{(f_{e_2},\Psi)o(g_{e_2},\Psi)\}}^{**}\right\} \ge \rho_{f,\Psi}^{**}.\lambda_{g,\Psi}^{**}$$
(7)

Again, by using Lemma 2 we have

$$\begin{split} \rho_{(F_{e_1},\Psi)}^{**} &= \rho_{f_{e_1}og_{e_1},\Psi}^{**} = \limsup_{r_1 \to \infty} \frac{\log M_1(r_1^{1+\delta}, f_{e_1}og_{e_1})}{\log \Psi(r_1^{1+\delta})} \\ &\leq \limsup_{r_1 \to \infty} \frac{\log M_1(M_1(r_1, g_{e_1}), f_{e_1})}{\log M_1(r_1, g)} \cdot \limsup_{r_1 \to \infty} \frac{\log M_1(r_1, g_{e_1})}{\log [\Psi(r_1)]} \\ &= \rho_{f_{e_1}}^{**} \rho_{g_{e_1}}^{**}. \end{split}$$

Similarly,

$$\rho_{(F_{e_2},\psi)}^{**} = \rho_{\{(f_{e_2} \circ g_{e_2}),\psi\}}^{**} \le \rho_{(f_{e_2},\psi)}^{**} \cdot \rho_{(g_{e_2},\psi)}^{**}.$$

Therefore

$$\rho_{(fog),\psi}^{**} = \max\left\{\rho_{(f_{e_1},\psi)o(g_{e_1},\psi)}^{**}, \rho_{(f_{e_2},\psi)o(g_{e_2},\psi)}^{**}\right\} \le \rho_{f,\psi}^{**}\rho_{g,\psi}^{**}.$$
 (8)

Therefore, from (7) and (8) the result follows.

CONCLUSION AND FUTURE PROSPECTS:

The estimates and derivation carried out in the paper may also be established under the treatment of bicomplex valued functions of slower and faster growth.

REFERENCES

- [1] G. B. Price : An introduction to multiplex spaces and functions, Marcel Dekker Inc., New York, 1991.
- [2] Michiji Futagawa : On the theory of functions of a quaternary variable, Tôhoku Math. J. Vol. 29 (1928), pp. 175-222 ; Vol. 35 (1932), pp. 69-120.
- [3] E. Hille : Analytic Function Theory, Chelsea Publishing, New York, Vol. I (1982), xi+308 pp.; Vol. II (1977), xii+496 pp.
- [4] James D. Riley : Contributions to the theory of functions of a bicomplex variable, Tôhoku Math. J. 2nd series, Vol. 5 (1953), pp. 132-165.

Sanjib Kumar Datta et al, Journal of Global Research in Mathematical Archives, 5(4), 67-74

- [5] G. K. Batchelor : An introduction to fluid dynamics, Cambridge Mathematical Library (1967).
- [6] J. Clunie : The composition of entire and meromorphic functions, Mathematical Essays dedicated to A. J. Macintyre, Ohio University Press (1970), pp. 75-92.
- [7] L. Liao and C.C. Yang : On the growth of composite entire functions, Yokohama Math. J., Vol. 46 (1999), pp. 97-107.
- [8] J. Rauch : Some fluid flows, Applied Complex Analysis (Ref. Website : www.math.1sa.umich.edu).
- [9] C. Segre : Le rappresentazionirealedelleformecomplesse'sGliEntiIperalgebrici, Math. Ann., Vol. 40 (1892), 413-467.
- [10] G. Valiron : Lectures on the general theory of integral functions, Chelsea Publishing Company (1949).
- [11] T. Yokoyama : Fluid Mechanics, Topology and Complex Analysis (Ref.Websitewww.stat.phys.titech.ac.jp/yokoyama/note 4.pdf).
- [12] G. D. Song and C. C. Yang : Further growth properties of composition of entire and meromorphic functions, Indian J. Pure Appl. Math, Vol. 15 (1984) No. 1, pp. 67-82.
- [13] K. S. Charak and D. Rochon : On factorization of bicomplex meromorphic functions, Quarternionic and Clifford Analysis, Trends in Mathematics, pp. 55-68© 2008 BirkhäuserVerlag Basel/Switzerland.
- [14] S. K. Datta and T. Biswas : On some further results of growth properties of composite entire and meromorphic functions, Int. Journal of Math. Analysis, Vol. 3, No. 29 (2009), pp. 1413-1428.
- [15] S. K. Datta and P. Sen : Deduction of some relations connecting Bicomplex Analysis and Fluid Dynamics, Int. J. of Adv. Sci. & Tech. Research, Issue 3, Vol. 3, May-June 2013, pp. 60-69.