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1 INTRODUCTION, DEFINITIONS AND NOTATIONS.

The most recent advancement of the theory of complex numbers lies in the progress of bi-complex analysis.
According to Segree [9], a bi-complex number § is defined as follows:

f =xp+ i1x1 + inZ + i1i2x3
where x, x1, x, and x5 are real numbers with i? = i2 = —1 and iyi, = iyi;.
The set of all bi-complex numbers is generally denoted by C.. In the theory of bi-complex numbers, the sets
of real numbers and complex numbers are generally denoted by Cy and C; respectively. Thus
CZ = {f : f = Xy + ilxl + izXZ + i1i2x3 3 X0, X1, X2, X3 € Co}
Equivalently, we may write C, = { : & = z; +iy2,; 712, € (1}
We have seen some illuminating works on the recent advancement of different aspect of bi-complex
analysis in  Michiji Futagawa [2], E. Hille [3], D. Riley [4], G. Baley Price [1]. In the present paper we
would like to establish some results in fluid dynamics in close- connection to bi-complex analysis. In fact,
the paper is an improved version of Datta and Sen [15 ] and therefore all the preliminary theories and
definitions on bi-complex analysis as required here are omitted.

Now, let us define a function as follows:

Let W: [0, ) — (0, ) be a non-decreasing unbounded function, satisfying the following two
conditions:

log[p](r)
) lim —=——— =1
O o v (]
and
logl?l (ar)
i ~1
010 gl )]
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for some o>1 and p, q are any two posotive integers.
With the help of function ¥ as defined earlier the following definitions may be given :
Definition 1. The ¥ —order pr ., 0f a bicomplex meromorphic function F(w) = F, (z; — i1z;)e; +
(z1 +i122)e;
is defined as P(Fy) = max {p(FeL\P),p(FeZ’\P)}

where

i lOglOgMi(rirEei)
= 11msu
Pret = 2 ™ log[¥ ()]

Remark 1. The ¥ —lower order A y0f a bicomplex meromorphic function is defined as

fori=1,2

Mrw) = min {K(Fel,w)' X(Fez,w)}’

where

loglogM;(r;, E,.
A(Fei,‘l’) = liminf ki l( : el) fori=1,2.

ri=® log[¥ ()]

Remark 2. The ¥ —hyper order gz (¥ —hyper lower order Az y)) and the generalized ¥ -order p((’,,f,)q,)

(generalized ¥ -lower order kgﬁ?q,)) can also be defined in a similar way.

Definition 2. The ¥ -type of F oz v of a bicomplex meromorphic function is defined as

O(Fw) = max {U(Fel,w): U(Fez,w)}

where

. logMi(Ti»Fei,‘{‘) .
O(F,, W) = llmsuprﬁoow and 0 < P(E, ) < © fori=1,2.

i

Definition 3. Let F(w) be an entire function of ¥ —order zero. Then the quantities pg ) and Ay, can be
defined as

pEF,‘*P) = max {p&kFelllp)'péFEZ,‘{l)}

and Ay = min {A’EW,),A’EFQT%}

_ L loglogMi(ri . )
WHETE P(reyy = TSNP 0 0 log W ()]

loglogM;(r;, E,.
and Ay, = liminf glogM; (1, .,) for i =1,2.

i oo loglog[¥(r)]

Definition 4.Let F(w) be an entire function order zero. Then the quantities p(r yyand Ay ) can be defined
as
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*% _ %k * %
P(rw) = Max {P(Fel,w P(Fez,\lf)} and

Arwy = min {/1858 KoL /1’{}'.16231)} where

logM;(1;, F,) logM; (1 F,,)
o= limsup ————= and A7 = liminf———————= fori = 1,2.
Phe, =MW gty M = M Togre )

Definition 5. (Factorization of F(w)) Let F(w) be a bicomplex meromorphic functionon T < C,. Then F is
said to have f and g as left and right factors respectively if F¢; has fe; and g as left and right factors
respectively for i=1,2, i.e., fs; is meromorphic and ge; is entire for i=1,2.

Definition 6. (Complex potential flow) If f(2) = u(x,y) + iv(x,y) € C; be a complex function where

u(x,y) € R? and v(x,y) € R?satisfy the Cauchy-Riemann equations, i.e.,Z—z = Z—;g—; = —g—z and Laplace’s
2 2
equation, i.e., a% + :;2 = 0, then f(z) can be termed as a complex potential fluid flow.

Definition 7.(Bicomplex potential fluid flow) If f(w) = f(z; + iy22) = f,,(z1 —i122)e; + fe,(z1 +
[/1z2e2 be the idempotent composition of two complex functions, with
fe,(z1 —1123) = u(zy,25) — i3v(zy — 23) € Cy and f,, (z; — i122) = u(zy,2;) + i1v(24, 2;) € C; Where

: . . , .. 2 v 9
u(zy, z,) and v(z,, z,) satisfy Cauchy-Riemann equations and Laplace’s equation, 1.e.,% = %,%
1 2 2

v a2 9z a2 9z . .
—Eand 527 + Fr i 0’@ + 57 = 0, therefore f,, (z; — i12,) and f,, (z; + i;2,) can be termed as complex
potential fluid flows. So, f(w) can be termed as a composition of two different potential fluid flows £, and
fes-
3 LEMMA.

In this section we present some lemmas which will be needed in the sequel.

Lemma 1 [8] [15]. If f(z) = u(x,y) + iv(x,y) be complex potential fluid flow defined in the region
{y > 0} satisfying the following properties :

Q) f(2) is continuously differentiable in the region {y > 0},
(i)  f () is parallel to the x-axis when y = 0 and
(iii)  f (2) is uniformly bounded in {y > 0}, then the order and lower order of f(z) are zero.

Corollary 1. If f(w) = f(z1 +i322) = fo,(z1 —1122)e1 + fe, (21 + [122)e; be an idempotent composition
of two complex potential fluid flows satisfying the following properties :

Q) fe, and f,, are continuously differentiable in the region {y > 0}
(i)  f,, and f,, are parallel to the x-axis when y = 0 and
(iii) fe'1 and fe'2 are uniformly bounded in {y > 0}, then the order and lower order of f(w) are zero.

Lemma 2 [14].1f f(z) and g(z) are any two entire functions , then for all sufficiently large values of r,

M (%M (%,g) - |g(0),f|) < M(r,fog) < MM(r, g),f).

Lemma 3[14]. If f be entire and g be a transcendental entire function of finite lower order, then for any
6 >0,

M(r1+5,f0g) ZM(M(T'g)'f) (T'ZT'())
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Lemma 4 [13]. If F has f and gas left and right factors, then we always have the following factorization :

F(w) = f(g(w)).
4 THEOREMS.
In this section we present our main results of the paper.

Theorem 1. If f(w) = f(z; +i22;) = fe,(z1 — i125)e; + f,, (21 + i12;)e; be an idempotent composition
of two complex potential fluid flows f,, and f., satisfying the following properties :

Q) fe, and f,, are continuously differentiable in the region {y > 0}
(i)  f,, and f,, are parallel to x-axis when y = 0 and
(iiiy  f,, and f,, are uniformly bounded in {y > 0},

then p} = 1land /1} =1.

Proof. From the definitions of p¢'yand A5, and using Definition 4, we have for arbitrary positive ¢, &, and
all sufficiently large values of ry,r;

logM, (11, £.,) < (P}, w) + £1) 1ogi¥ (1)]and
logMy (2, £2,) < (p{f, ) + £2) Log[¥ ()]
Therefore, loglogM, (rl,fel) < loglogi¥¥ (r;)] + 0(1)

and loglogM, (rz,fez) < loglogi¥¥ (r;)] + 0(1)

loglog M1 (r1.fe;) < loglog [W(rI+O

" loglog [W(r1)] T loglog [¥(rq)]
loglogM,(7s, f,,) - loglog[¥ (r,)] + 0(1)
loglogr, - loglog[W¥ ()]
loglogMy(ry, f;,) loglogM;(7y, f,,)
i.e.,limsu < 1 and limsu 2 <
no loglog[# ()] o Loglog[¥ ()]

i.e.,p;%w <1land p}ez,q, < 1 and therefore using Definition 3,
we have pfy < 1. (1)
Similarly, proceeding as above and using Definition 3,
we have Az y < 1. (2)
Again, for arbitrary positive €1, and all sufficiently large values of ry,r, we have

log; (11, £2,) = (25, ) — &1 ) log¥ (r1)]

andlogM, (Tfoez) > (A’E}ez,% — 82) log[¥W ()]

Therefore,loglong(rl,fel) > loglog[¥ ()] + 0(1)
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andloglogM, (rz,ﬁ,z) > loglog[¥ (r,)] + 0(1)

loglog M1(T1.fe1) > loglog [¥ (r1)]4+0(1)
loglog [P(r1)] = loglog [¥(ry)]

and

loglogMz(rz,fez) - loglog[¥(r,)] + 0(1)
loglog[¥ ()] —  loglog[¥(r,)]

i.e.,limsup loglong(rl,fel)
5w loglog[W ()]

loglogM, (rz, fez)
and limsu — >1
r2—>oop loglogf¥ (r;)]

>1

i.e.,pg‘fely) >1and pzfez.‘%’) > 1 and therefore using Definition 3,

we have psy = 1. 3)
Similarly, proceeding as above and using Definition 3,

we have A; y = 1. 4)
From (1) and (3) we have ps , = 1 and from (2) and (4) we have A¢y = 1.
Thus the theorem follows.

Example 1. Let f(w) =w =z, + iz, = (21 — i122)e; + (21 + i12,)e, € C, (bicomplex space) be a
bicomplex potential fluid flow in C,.

Therefore, f,, = z; — i1z, € ¢, (orC) and f,, = z; + iz, € Cy(or C)

loglong(rl,fe )
Therefore, = limsu L
f pfel,w rl—)oop lOg['zU(T'l)]

o ~ limsu loglogMz(Tz,fez)
PUep ) = TP ™ Togli# ()]

Hence pf = 0 and similarly 4z, = 0.

=0asM(r,f,,) <lzy —ihzal <1+ 1y

=0as Mz(rz,fez) <l|zy+i1zl <+ 1y

loglogM, (11, loglog(r; +r
p(fel,kl’)=lim5up giog 1(1fel)_. glog(ry 2)=1’ s fixed.

=11
row  loglog[¥ ()] raoe0  l0glog[¥ (r1)]

loglogM;( >, loglog(r, +
And péfez’w) = limsup 909 2( 2 er) = i glog(n + ) = 1,1, is fixed.

1
r-w  loglog[¥(r2)] rmew  loglog[¥ (r,)]
Therefore,p; v = 1 and similarly A 4, =1.

Similarly, we can also show that p;y = 1andAfy = 1.
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Theorem 2. Let f(w) and g(w) be any two bicomplex potential fluid flows satisfying the following properties

Q) fe,» fe, are continuously differentiable in the region {y > 0}
(i)  f., f., are parallel to the x-axis when y = 0
(iii)y  f.,, f;,are uniformly bounded in {y > 0}, such that p; = 0 and A; < .

Then pf’lll = pg'l‘u.

Proof. Using Lemma 4, we can say that F(w)can be factorized to f(g(w)). Now, using Lemma 2 and
Theorem 1 we have

— =i loglong(rl'ﬁelOgel)
Py #) = Pilferogen ¥y = HISTP log[¥ ()]
< limsu loglogM(M(rl,gel),fel) limsu loglogM(rl,gel)
S e loglogM(r,g)  moe log[P(r)]

S PG ) Pger¥) = 1-Plge ) = Pgleyw)
Similarly,
P(Foy ) = P(ge, W)
Therefore
PEY = P{(fog)w} S Max {P<gel,sv)'P(gez,sv)} = Py

1.e.0ry < Pgw. ®)

Now using Lemma 3 and Theorem 1, we have

_ ~ limeu loglogMy (r{*°, f,,08.,)
'D(Feylp) p{(felogel)’llu} r1—>00p log,ElI/(rll-i-(S)

. loglogM(M(rl,gel),fel) loglogM(rl,gel)
= liminf . p =
o0 loglogM(rl,gel) 7100 logif¥ ()]

Z X ) Pge#) = 1-P(ge ) = Plgey )
Similarly, p(Fez'l’U) = ,0(982,11/).
Therefore
PFEw = P{(fog)w} = Max {P(gel,‘l’)'/’(gez,‘l’)} = Py

i.e., Pry = pg‘lp- (6)
Therefore from (5) and (6), the result follows.

Theorem 3. Let f(w) and g(w) be any two bicomplex potential fluid flows satisfying the following properties
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Q) f(w) is entire and g(w) is transcendental such that ps,, = 0 and 1, < oo,
Then prwAg'w < Pfog)w < PrwPgw-

Proof. Using Lemma 3 we have

'D(Fe1,‘1’) - ’D{(felo\gel):l‘u} - llfl_s)olip log[qj(rll-i—(S)

> limsup LogMy (My (rl'gel)'fel) liminflong (rl'gel)
oo logM(ry, 9) "o logl (1)

*k kK

= pfellgel'

Similarly,

PFuy ) = P((fury0ge) ¥} = Pfuy#) Moy )

Therefore

Piogw = MAX D7, yoger 30 Py o taeyin) = Pl (1)

Again, by using Lemma 2 we have

*% T =i lOng(r11+6'félogel)
PEF, W) = Pfojoge, ¥ = lrnlfl_S)gp logi¥ (r1+5)
1
logM; (M, (r,, , logM, (1,
< limsup gMy (M (11, 9e,) fel).limsu gMi (11, 9e,)
r1—0 long (rl' g) 100 lOg [l‘ll(rl)
= 'D;e*lp;:l'
Similarly,
pE;eva) = ’Dg&ez‘)gez)vlp} = p&k;ezvlp)'pé;esz)'
Therefore

pg;og),‘l’ = max {pz;erw)o(geyw)' p?;ez,'{’)o(gez,‘l’)} = p;:kll’p‘;*'{’ (8)
Therefore, from (7) and (8) the result follows.

CONCLUSION AND FUTURE PROSPECTS:

The estimates and derivation carried out in the paper may also be established under the treatment of
bicomplex valued functions of slower and faster growth.
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