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Abstract: This paper derives the probabilistic continuous review inventory model that has the two types of shortage when the order cost is a 

function of the order quantity. The objective is to minimize the expected annual total cost under a constraint on the expected holding cost when 

the lead time demand follows Normal distribution by using the Lagrangian method. Some published special cases are deduced and a numerical 

application with illustrative graphs is added. 
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1. INTRODUCTION 

The two basic questions that any inventory control system has to answer are when and how much to order. Over the years, 

hundreds of papers and books have been published presenting models for doing this under a wide variety of conditions and 

assumptions. Most of authors have shown that if demand that cannot be filled from stock is backordered or using the lost sales 

model. Rabinowitz et al. [4] modeled a  rQ,  inventory system using a control variable, which limits the maximum number of 

backorders allowed to accumulate during a cycle. Also, Zipkin [11] shows that if demands occurring during a stockout period are 

lost sales rather than backorders, the optimal policy is to have either no stockout or all stockouts. 

 

Several  rQ,  inventory models with mixture of backorders and lost sales were proposed by Posner and yansouni [10], 

Montgomery et al. [1], Rosenberg [2], and Park [8]. Almost all the previous research works used   as a fraction of unsatisfied 

demand that will be backordered (the remaining fraction )1(  completely lost) to model partial backorders. Since it is optimal 

to allow some stockouts if all customers will wait ( =1) and it is optimal to either allow no stockouts or lose all sales if 

customers have no patience ( =0). 

 

Recently, El-Wakeel and Fergany [9] deduced Constrained Probabilistic Continuous Review Inventory System with Mixture 

Shortage and Stochastic Lead Time Demand. Fergany and El-Sodany [7] derived probabilistic periodic review backorders and lost 

sales models under constraint and varying holding cost and normally distributed protection interval demand. Also, El-wakeel and 

Fergany [5,6] introduced probabilistic lost sales models with normal distribution and other continuous distribution. 

 

In this study, we assume that both backorder and lost sales costs are independent of the duration of the stockout and   is the 

backorder fraction. Also, we deduced the model with varying order cost when the demand is a random variable, the lead-time is 

constant and the lead time demand is normally distributed under the holding cost constraint. The situation will be considered in 

which a single item is stocked to meet a probabilistic demand.  
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2. NOTATIONS AND ASSUMPTIONS  

The following notations are adopted for developing our model: 
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THE FOLLOWING ASSUMPTIONS ARE ADOPTED FOR DEVELOPING OUR MODEL: 

 

The system is a continuous review which means that the inventory levels are reviewed continuously and orders are recorded and 

then the inventory level is known at all times. An order quantity of size Q  per cycle is placed every time the inventory level 

reaches a certain reorder point r . The problem is to determine the optimal values of Q  and r  which minimize the expected 

annual total cost. Thus, the following assumptions are made for developing the mathematical model: 

 

1) The cycle N is defined as the time between two successive arrivals of orders 
D

Q
N   

2) Assume that the system repeats itself in the sense that the inventory position varies between r  and Qr  during each 

cycle. 
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3) The average number of cycles per year can be written as 
N

n
1

 .  

4) There is never more than a single order outstanding.  

5) When the number of units on hand and on order reaches the reorder point r , action is initiated to procure a replenishment 

quantity Q . 

6)  

3. THE MATHEMATICAL MODEL  

 

In this model, the expected annual total cost consisted of the sum of three components: the expected varying order cost, the 

expected holding cost and the expected shortage cost as follows: 
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Our objective is to minimize the expected annual total cost  ),( rQTCE  under the expected holding cost constraint: 
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To solve this primal function which is a convex programming problem, let us write it in the following form: 
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To find the optimal values 
*Q and 

*r which minimize equation (8) under the constraint (9), we will use the Lagrange multiplier 

technique as follows: 
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Where   is the Lagrange multiplier. 
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The optimal values 
*Q and 

*r can be found by setting each of the corresponding first partial derivatives of equation (10) equal to 

zero, then we obtain: 
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Where      DcMandDcGDcBcA bloh  ,)1(2,)1(  . 

Clearly there is no closed form solution of equations (11) and (12). 

 

4. LEAD-TIME DEMAND FOLLOWS NORMAL DISTRIBUTION 

 

Assume that the lead-time demand follows the Normal distribution. So we can minimize the expected annual total cost 

mathematically as follows: 
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Substituting form (13) into (11) and (12), we get: 
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Also, solving the pairs of equations (14) and (15), we have to use the iterative method. 

 

5. SPECIAL CASES 

 

Case 1: When 0 and )( and 0,0   oo cQCK . Thus equations (14) and (15) become: 
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       This is unconstrained lost 

sales continuous review inventory model with lead-time demand follows the Normal distribution and constant order cost as given 

by Hadley   [3] .  

 

Case 2: Let 0 and )( and 0,0   oo cQCK .Thus equations (11) and (12) become: 
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This is unconstrained lost sales continuous review inventory model with constant units of cost, which are the same results as in 

Hadley [3]. 
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Case 3: Let 0 and )(  and   0,1   oo cQCK .Thus, equations (11) and   (12) become: 
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This is unconstrained backorders continuous review inventory model with constant unit costs, which are the same results as in 

Hadley [3] and Fabrycky &Banks [13]. 

 

 

6. AN APPLICATION  

 

The cosmetics department of a large department store has recently introduced a constrained  rQ,  system with varying order 

cost and mixed shortages to control many items in the department. A particular type of expensive perfume has an annual demand 

rate equals 1600 units. The cost of placing an order amounts to $4000 and the inventory holding cost is $10. This particular 

perfume is not easy to obtain elsewhere, and hence demands occurring when the store is out of stock are partially backordered. 

The management estimates that 70% of unsatisfied demand will be backordered with backorder cost equals $600 and the 

remaining demand will be lost with cost $2000. There is a restriction that the average holding cost is either less than or equal 

$8500 per year and the procurement lead-time is constant. Determine 
*Q  and 

*r when the lead time demand has Normal 

distribution with 125  and 220  units. 

 

We have the parameters values: 

 1600D , 4000$oc , 10$hc , 600$bc , 7.0 , 2000$lc  and 8500$K .  

By solving the previous deduced equations at different values of  , we obtain: 

 

Table 1: The optimal solutions and the min E(TC) for each distribution at 7.0  

 

From the data given in Table 1, we can draw figures of the optimal values of 
*Q , 

*r and minE(Tc) against   as in the following 

Figures (1) , (2) and (3) : 

 

 
*Q                                                                        

*r  

                    

 

 

 

 

 

 

 

 

  *Q  *r  minE(TC) 

0.1 1561 191.2 17123.5 

0.2 1580 184.7 26350.5 

0.3 1594 177.6 45525.5 

0.4 1609 170 85429.9 

0.5 1625 162 168498.2 

0.6 1641 153.6 342001.5 

0.7 1657 145 704881.4 

0.8 1670 137.7 1465291.4 

0.9 1673 136.5 3061493 
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      Figure (1): The optimal values of 
*Q against                   Figure (2): The optimal values of 

*r against   

                                   minE(Tc)                                        

 

 

 

 

 

 

                                                                                                                         

                                                                                                                                                                                                                                                 

Figure (3): The optimal values of min E(TC) against   

 

 

7. CONCLUSION 

  

This section deducing our probabilistic (Q,r) model with partially lost of customers when lead-time demand follows Normal 

distribution. For such distribution, we can evaluate the solution of 
*Q and 

*r for each value of   and   which holds our 

constraint on the expected holding cost  and then obtain the minimum expected total cost. From the previous example, we can 

deduce that the optimal minE(TC) when the lead-time demand follows Normal distribution will be at 1.0 . Also, we draw the 

curves of 
*Q , 

*r  and minE(TC)  against   for the model, which indicate the value of   that minimizes the expected annual 

total cost of our application. 
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