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Introduction: In this paper, it is shown that the set of all bounded real ~Quasicontinuous functions defined

on [0,1] forms a commutative Banach algebra with identity under the supremum norm. The maximal ideals
in this Banach algebra are identified to be of the form M, ={f / f(x)=0} or M, ={f / f(x-) =0} for
xe[0,1].

In what follows, | and J stand for the real line, the unit closed interval [0,1] and any closed and bounded

interval [a,b] respectively.

1. Preliminaries
1.1 Definition: Let f:J —[1. We define f(a—)= f(a) and f(b+)= f(b). We say that f(p+) exists at

p e[a,b) and we write f(p+)=L, where Lell if forevery ¢ >0 there existsa ¢ >0 such that
[f(X)—L|<e V xe(p, p+5)<J Similarly for p e (a,b] wewrite f(p—)=Iell ifforevery &>0 there

existsa 6 >0 suchthat |f(x)—l|<e Vxe(p-5,p)c=

1.2 Definition: A function f :J — 0 issaid to be ~Quasicontinuous on J if
(i) f(p-) exists atevery p e (a,b]
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(i) fa+)="f(a)
1.3 Definition: A function f :J —[ issaid to be cliquish at a point p € J if for every ¢ >0 and every

neighborhood U of p in J there exists a non-empty open set W —U such that
[f(x)—f(y)|<e Vx,yeW. Wesaythat f iscliquish on J ifit s cliquish at every point of J .

1.4 Definition: A mapping T from a linear space 7~ into a linear space %" is said to be linear if

T(cx+dy) =cT(X)+dT (y) forall x and y in 2~ and constants ¢ and d.
1.5 Definition: Let #” and 2~ be normed linear spaces. A linear map T:7” —> %" is said to be bounded

if there exists a real number K >0

such that [T(x)|<K|x| V xe7 .

1.6 Definition: A linear functional on a vector space 7~ over a field %" is a linear mapping from 7~ to
F .
2. Properties of "Quasicontinuous functions

2.1 Proposition: Let cell . If f:J—0 and g:J — [ are ~Quasicontinuous on J then f +g,cf,
fg, f vg and f Ag are “Quasicontinuous on J, where (f v g)(x) =max { f (x),g(x)} and

(f Ag)(x)=min { f(x),g(x)}.
Proof: Let pe(a,b]. (i) Let £>0 be given. Then there exist 6, >0 and &, >0 such that

£ () - f(p)|<< Vxe(p-5,p)cd and|g(X)—g(p-)|<< Vxe(p-5, p)cJ.
2 2

Put 6 =min{o,,9,}.

Then x e (p=5,p) =|(f +8)()—(F (P)+9(pN| <|f ()~ F(p-) +
l9(x)—9(p-)|
<Eif_g
2 2

Thus for every ¢ >0 there exists a 6 >0 such that
(f +9)() = (f(p-)+g(p-))|<e Vxe(p-3J,p)
Hence (f +g)(p-) existsand (f +g)(p—)= f(p-)+9g(p-). Since f and g are continuousat a, f +g
is continuous at a.
Hence f +g is ~Quasicontinuous on J.

(i) If ¢=0 then cf =0, where O:J —[ is defined by O(x)=0.
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Then cf is ~Quasicontinuous on J. Now suppose that c#0.
Let £ >0 be given. Then there existsa ¢ >0 such that

&
le
= |(eH)(X)~(cf)(p-)|<e V xe(p—6,p)

Hence (cf) (p—) existsand(cf) (p—)=c f (p—). Since f iscontinuous at a, cf is continuous at a.

[f(x)— f(p-)|<= Vxe(p-6,p)c

Hence cf is ~Quasicontinuous on J .
(ili) Since f and g are ~Quasicontinuous at p, for every & >0 there existsa & >0 such that
| f()—f(p-)|<eand |g(x)-g(p-)|<e Vxe(p-6,p)c]
=|(fg)(x) - T (p=)g(p-)|=[F ()g(x) — f () g(p-) + f (x)g(p-) - f (p-)g(p-)|
<[ (9|90 = g(p-)|+|g(p-)|| f ()= (p-)|
<|[f()|e+|g(p-)|e ¥V xe(p-5,p)
=)~ f(p-)+ f(p-)e+g(p-)|e
<e(e+|f(p)|+|a(p-)|) Vxe(p-6,p).
Hence (fg) (p-) exists and (fg) (p—) = f(p—) 9(p—). Since f and g are continuous at a, fg is

continuous at a.

Hence fg is ~Quasicontinuous on J .

Itis easy to verify that f v g and f Ag are ~Quasicontinuous on J and we have the following.
(f vg)(p-)=max{f(p-),g(p-)} and (f Ag)(p-)=min{f(p-),9(p-)} .
2.2 Proposition: Let f,:J >0, n=12,3,..., be “Quasicontinuous on J and f — f uniformlyon J.
Then f is ~Quasicontinuous on J.
Proof: Let pe(a,b]. Let £ >0 be given. Then there exists an integer N such that n>N

- |fn(x)—f(x)|<§ v xeld.

Since f, is ~Quasicontinuous at p, there existsa & >0 such that

[ f () — fy(p)| <& Vxe(p-6,p)c=
xe(p=5,p)= [F()—fy(p-)|=]T ()~ i, )+ fy (x) = F (p-)
<[00 = fy (0] +] fi 0 = iy (p-)]

© JGRMA 2013, All Rights Reserved 62



V. Srinivasa kumar et al, Journal of Global Research in Mathematical Archives, 1(3), March 2013, 60-69

E €&
<—+==¢.
2 2

Thus for every &> 0 there existsa 6 >0 such that
|f(x)—fy(p-)|<e Vxe(p—6,p) <.
Hence f(p-)exists for every p e (a,b].
Since each f is continuousat aand f, — f uniformlyon J, f iscontinuousat a. Hence f is
~Quasicontinuous on J.

2.3 Remark: Itis not necessary that a ~Quasicontinuous function defined on a compact domain is

bounded. It can be seen from the following example.

1 if -1<x<0
2.4 Example: Define f :[-1,1] >0 by f(x)=
P [ ] y 1) 1if O0<x<1
X

This function f is ~Quasicontinuous on [—1,1] but it is not bounded.

2.5 Remark: We denote the set of all bounded real valued ~Quasicontinuous functions defined on | by

the symbol &2 (1). By the propositions 2.1 and 2.2 it follows that &~ (1) forms a commutative Banach
algebra with identity under the supremum norm, where the identity e: 1 —[ is defined by

e(x)=1V xel.

2.6 Proposition: Let f:J —[ and peJ. If f(p—) existsthen f iscliquishat p.

Proof: Let £>0 be givenand let U be a neighborhood of p in J. Then there exists a ¢, >0 such that
(p-6,p+5,)NIcU.

Given f(p-) exists. So there exists a , >0 such that
&
[F09=f(p)f< ¥ xe(p-8,p) .

Put o =min{o,,6,} and W =(p-95, p).
Then for x,y eW , we have |f(x)— f (y)|=|f (x)— f (p-)+ f (p-) - f ()|

<[f ()= F(p)|+]| F () - f(p-)

E €&
<—+==¢.
2 2
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Thus for every & >0 and every neighborhood U of p, there exists a non-empty open set W —U such that
f)-f(y)<e V x,yeW

= f iscliquishat p.
2.7 Remark: From the above proposition it is clear that every ~Quasicontinuous function is cliquish. The

converse is not true as is evident from the following example.

2.8 Example: Define f: [-1,1] — 0 as follows.

1 .
= if -1<x<0

f(x) =4 x
0 if 0<x<1

Clearly f iscliquish at x =0but it is not ~Quasicontinuous .

2.9 Theorem [2]: If f:J — 0 is ~Quasicontinuous then the set of points of discontinuity of f is atmost
countable.

3. Maximal Idealsin & (1)

3.1 Definition: Foreach xel, we define the following.

@ M, ={fege (1) f(x)=0} (b) M, ={fece (1) f(x-)=0}.

3.2 Proposition: Foreach xel,thesets M, and M, are maximal ideals in the commutative Banach
algebra @z~ (1) .

Proof: For xel,define F, and F, on && (1) by F (f)=f(x) and F (f)=f(x-) for fe
gz (1).

Clearly F andF, are multiplicative linear functionals in the dual space & with kernels M, and M
respectively. Hence M, and M, are ideals. Moreover M, and M, are maximal ideals in <&~ (I).
3.3 Proposition: If M is a maximal ideal in &&~(I)then either M =M, or M =M, for some xel.

Proof: For xel,define F, and F,on & (1) by F (f)=f(x) and F_ (f)=f(x-) for feaz (l)

Clearly F and F, are multiplicative linear functionals in the dual space & with kernels M, and M
respectively. Hence M, and M are ideals. Moreover M, and M, are maximal ideals in @&~ ().
3.3 Proposition: If M isa maximal ideal in &£~ (1) then either M =M, or M =M forsome xel .

Proof: Assumethat M =#M,and M =M forany xel.
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Then there exist f, and g, in M suchthat f,eM, and g, ¢ M.

Define ¢, 11 >0 by o, (t)=f2(t)+g’(t-) V tel.

Clearlyp, e @z~ (1). Since ¢, is ~Quasicontinuous at x and ¢, (x) >0, there exists a J, >0 such that
o, (t)>0 V te(o,,1] and for x #0.

We have g, (t) = f2(t)+g2(t-) Vtel.

Since ¢, is continuous at 0 and ¢,(0) >0 there exists a o >0 such thatg,(t) >0 V te[0,5). Then

[O,1]=(XL¢J0 (§X,1])U[O,5). Since | is compact, there exists an X, #0 in I such that[0,1] = (5, ,1]U[0,0) .
Put(o:¢f0 +¢f. Then peM and o(t)>0Vtel :>£e M.
2

Then e = go.le M . This is a contradiction, Hence it follows that M =M or M =M, for some xel .
%

3.4 Remark: Let .# be the space of all maximal ideals in & (1). Then .# is a compact Hausdorff

space with the weak” topology on &z~ (1). Hence .#°=.# x.# isacompact Hausdorff

space with the product topology on &&= (1)x&& (1) .

3.5 Proposition: Let o = {(MX, MX‘)/ Xe I} . Then there exists a one-to-one correspondence between
| and .

Proof: Define ¥ :1 >~ by ¥ " (x)=(M_,M,).

Clearly W is surjective. If 0<s<t<1, the function

0 if 0<p<t
YoP=1 1 % a1
p—t
satisfies W, eM, and ¥, ¢ M..
= M, =M,
= (M, ,M])=(M,M,)
= Y (s5)=¥V (1)
Hence W is 1-1.

Hence YW~ is a one-to-one correspondence between | and o7~ .
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3.6 Remark: Each maximal ideal in &£ () is the kernel of some multiplicative linear functional on
&~ (1), hence can be identified with a multiplicative linear functional on&z~(1). Let M, and M, be
identified with the multiplicative linear functional F, and F_ respectively. So we can write

o ={(F.F)/xel}.

3.7 Proposition: .~ isclosed in B° =B xB_ and hence compact.

Proof: We prove that .oz~ is closed. Compactness is an immediate consequence of the Banach — Alaoglu

theorem [5]. If F =(F,F,)eB?, we define ||F|= max{|| F|.[F|l} . Then B?is a Banach space under the
above norm.

Let S={F/|F|<1j<B’. Put A= U{O}.

Then v~ c A’ c AcScB.

Define P : A —[ by

1 if Fe4 and F#0

]J(F):{o if F=0

Since P~ is continuous, .z~ and _4 are closed in B? .

4. Further Properties
4.1 Proposition: Fix f e @& (1). Define w11 ->0? by w,(x)=(f(x), f(x-)), where [1* =[] x[] is
considered with the norm [[(x,, x,)||=max {|x,|,|%,|}. Then y is continuous on I if and only if f is

continuous on | .

Proof: Assume that y is continuouson I . Let pel andlet £>0 be given. Since y, is continuous at
p, there exists a 5> 0 such that|y, (x) -y, (p)| <& Vxe(p-5,p+S)NI.

= [(f(x), F )= (F(p), f(p-))]| <& ¥V xe(p-5,p+) N

=|(f(x)—f(p), f(x)—f(p)|<e V xe(p-6,p+3) NI

= max{| f(x)— f(p)|,|f (x) - f(p-)[} <& V xe(p-5,p+3) NI

=[f()-f(p)<e V xe(p-5,p+9)

= f iscontinuousat p.

Thus if w, iscontinuous at p then f iscontinuousat p.

Conversely suppose that f is continuouson | .
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Then w, (x) =(f(x), f(x)) Vxel.
Hence w, continuouson 1.
4.2 Proposition: Let B={y/, / f ez (1)}. Define F:&& (1) B by F(f)=w,. Then F isaone-
to-one continuous multiplicative linear mapping from &~ (1) onto B.
Proof: Clearly F:&2 (1) > B issurjective.
For f,ge @ (1), w;.,,(x)=((f +9)(x).(f +9)(x-))
=(f(x), F(x=))+(9(x), 9(x-))
=y () +y,(x) V xel
Hence v, =y, +y, V f,gec&z (l)
= F(f+9)=F(f)+F@) Vv f,geaz (l).
Let cell . Itiseasytoseethat F(cf)=y, =cy, =cF(f) V fe&? (l).
Hence F is linear.
Also we have y, (x) = ((fg)(x), (fg)(x-))
=(f(x), f(x)) (9(x),9(x-))
=y (X y,(x) V xel.

Hence F(fg) =y, =w v, =F(f)F(g).
= F is multiplicative. Now we prove that F is1—1. For this, suppose that
F(f)=F(@Q) = v:=vy,

= v, (X)=y,(X) V xel

= (f(x), f(x)) =(9(x),9(x-)) Vxel

= f(X)=g(x) V xel

= f=g.
Hence F is1-1.
Suppose that f. e @& (1), n=1,2,3,..., and feg& (l).

Let f, — f uniformlyon |. Then foragiven & >0 there exists an integer N >0 such that

|fn(x)—f(x)|<§ forall n>N andall xel.
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Fix xel and n>N. Since f, is ~Quasicontinuous there existsa &, >0 such that

|fn(t)—fn(x—)|<§ V te(Xx—5,X).

Since f isalso ~Quasicontinuous at x, there exists a 8, >0 such that
|f(t)—f(x—)|<§ V te(X—5,,X).

Put & =min{s,,0,}. Thenfor te(x—o,x) and n>N,

| £, (%) = £ ()| = £,06) = £, @) + f, () - F O+ T () - (x|
<[, (x=) = O+ f, O — T O +|f ©) — T (x|

Hence |f,(x-)— f(x-)|<& forall n>N andall xel.
n=N = [F(f)-F(f)] =|w, —v|

:Sup{wan () -y, (9] /xe |}< £.
= F(f,)—> F(f) Uniformlyon 1.

Hence F is continuous on&Z (1).

4.3 Proposition: The set B={y, / f eZZ (1)} is a commutative Banach algebra with identity v, under

the norm defined by || :sup{Hl//f )|/ xe I} ,where w,(X) =11 V xel.
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