

On The Maximal Ideals In The Banach Space Of Quasicontinuous Functions

 *V. Srinivasa kumar and **DVM. Ramani
*Assistant professor, Department of Mathematics, JNTUH College of Engineering, JNTU, Kukatpally, Hyderabad-500072, A.P., India.
E-Mail:srinu_vajha@yahoo.co.in
**Plot no-39, H.No.3-6-358, Janapriya colony, opp.TNR sakantula Apts, Saroornagar road, L.B.Nagar, Hyderabad-500074, A.P., India.
E-Mail-dvmramani@yahoo.in

Abstract: In this paper, some interesting properties of Quasicontinuous functions are presented. The maximal ideals in the Banach space

of bounded real valued \neg Quasicontinuous functions defined on [0,1] are investigated.

AMS subject Classification: 13A15, 26A15, 26A48, 46J10, 46J20.

Key words: Quasicontinuity, Maximal ideal, Space of maximal ideals, Weak^{*} topology, Compact Hausdorff space, Bounded linear functional, Cliquish function.

Introduction: In this paper, it is shown that the set of all bounded real ⁻Quasicontinuous functions defined on [0,1] forms a commutative Banach algebra with identity under the supremum norm. The maximal ideals in this Banach algebra are identified to be of the form $M_x = \{f / f(x) = 0\}$ or $M_x^- = \{f / f(x-) = 0\}$ for $x \in [0,1]$.

In what follows, I and J stand for the real line, the unit closed interval [0,1] and any closed and bounded interval [a,b] respectively.

1. Preliminaries

1.1 Definition: Let $f: J \to \Box$. We define f(a-) = f(a) and f(b+) = f(b). We say that f(p+) exists at $p \in [a,b)$ and we write f(p+) = L, where $L \in \Box$ if for every $\varepsilon > 0$ there exists a $\delta > 0$ such that $|f(x)-L| < \varepsilon \forall x \in (p, p+\delta) \subset J$ Similarly for $p \in (a,b]$ we write $f(p-) = l \in \Box$ if for every $\varepsilon > 0$ there exists a $\delta > 0$ such that $|f(x)-l| < \varepsilon \forall x \in (p-\delta, p) \subset J$

1.2 Definition: A function $f: J \to \Box$ is said to be \neg Quasicontinuous on J if

(i) f(p-) exists at every $p \in (a,b]$

(ii) f(a+) = f(a)

1.3 Definition: A function $f: J \to \Box$ is said to be cliquish at a point $p \in J$ if for every $\varepsilon > 0$ and every neighborhood U of p in J there exists a non-empty open set $W \subset U$ such that

 $|f(x) - f(y)| < \varepsilon \quad \forall x, y \in W$. We say that f is cliquish on J if it is cliquish at every point of J.

1.4 Definition: A mapping T from a linear space \mathscr{V} into a linear space \mathscr{W} is said to be linear if T(cx+dy) = cT(x) + dT(y) for all x and y in \mathscr{V} and constants c and d.

1.5 Definition: Let \mathscr{V} and \mathscr{W} be normed linear spaces. A linear map $T: \mathscr{V} \to \mathscr{W}$ is said to be bounded if there exists a real number $K \ge 0$

such that $||T(x)|| \le K ||x|| \quad \forall x \in \mathscr{V}$.

1.6 Definition: A linear functional on a vector space \mathscr{V} over a field \mathscr{K} is a linear mapping from \mathscr{V} to \mathscr{K} .

2. Properties of ⁻Quasicontinuous functions

2.1 Proposition: Let $c \in \Box$. If $f: J \to \Box$ and $g: J \to \Box$ are ⁻Quasicontinuous on J then f + g, cf, fg, $f \lor g$ and $f \land g$ are ⁻Quasicontinuous on J, where $(f \lor g)(x) = \max\{f(x), g(x)\}$ and $(f \land g)(x) = \min\{f(x), g(x)\}$.

Proof: Let $p \in (a,b]$. (i) Let $\varepsilon > 0$ be given. Then there exist $\delta_1 > 0$ and $\delta_2 > 0$ such that

$$|f(x) - f(p)| < \frac{\varepsilon}{2} \quad \forall x \in (p - \delta_1, p) \subset J \text{ and } |g(x) - g(p)| < \frac{\varepsilon}{2} \quad \forall x \in (p - \delta_2, p) \subset J.$$

Put $\delta = \min\{\delta_1, \delta_2\}.$

Then $x \in (p-\delta, p) \Rightarrow |(f+g)(x) - (f(p-)+g(p-))| \le |f(x) - f(p-)| + |g(x) - g(p-)| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$

Thus for every $\varepsilon > 0$ there exists a $\delta > 0$ such that

$$\left|(f+g)(x) - (f(p-)+g(p-))\right| < \varepsilon \quad \forall \ x \in (p-\delta,p)$$

Hence (f+g)(p-) exists and (f+g)(p-) = f(p-) + g(p-). Since f and g are continuous at a, f+g is continuous at a.

Hence f + g is Quasicontinuous on J.

(*ii*) If c=0 then cf=O, where $O: J \to \Box$ is defined by O(x)=0.

© JGRMA 2013, All Rights Reserved

Then cf is Quasicontinuous on J. Now suppose that $c \neq 0$.

Let $\varepsilon > 0$ be given. Then there exists a $\delta > 0$ such that

$$|f(x) - f(p)| < \frac{\varepsilon}{|c|} \quad \forall x \in (p - \delta, p) \subset J$$

 $\Rightarrow |(cf)(x) - (cf)(p)| < \varepsilon \forall x \in (p - \delta, p)$

Hence (cf)(p-) exists and (cf)(p-) = c f (p-). Since f is continuous at a, cf is continuous at a. Hence cf is Quasicontinuous on J.

(*iii*) Since f and g are ⁻Quasicontinuous at p, for every $\varepsilon > 0$ there exists a $\delta > 0$ such that $|f(x) - f(p-)| < \varepsilon$ and $|g(x) - g(p-)| < \varepsilon$ $\forall x \in (p-\delta, p) \subset J$ $\Rightarrow |(fg)(x) - f(p-)g(p-)| = |f(x)g(x) - f(x)g(p-) + f(x)g(p-) - f(p-)g(p-)|$ $\leq |f(x)||g(x) - g(p-)| + |g(p-)||f(x) - f(p-)|$ $< |f(x)|\varepsilon + |g(p-)|\varepsilon \quad \forall x \in (p-\delta, p)$ $= |f(x) - f(p-) + f(p-)|\varepsilon + |g(p-)|\varepsilon$ $< \varepsilon (\varepsilon + |f(p-)| + |g(p-)|) \quad \forall x \in (p-\delta, p).$

Hence (fg)(p-) exists and (fg)(p-) = f(p-)g(p-). Since f and g are continuous at a, fg is continuous at a.

Hence fg is Quasicontinuous on J.

It is easy to verify that $f \lor g$ and $f \land g$ are ⁻Quasicontinuous on J and we have the following. $(f \lor g)(p-) = \max\{f(p-), g(p-)\}$ and $(f \land g)(p-) = \min\{f(p-), g(p-)\}$.

2.2 Proposition: Let $f_n: J \to \Box$, n = 1, 2, 3, ..., be ⁻Quasicontinuous on J and $f_n \to f$ uniformly on J. Then f is ⁻Quasicontinuous on J.

Proof: Let $p \in (a,b]$. Let $\varepsilon > 0$ be given. Then there exists an integer N such that $n \ge N$

$$\Rightarrow |f_n(x) - f(x)| < \frac{\varepsilon}{2} \quad \forall \ x \in J.$$

Since f_N is Quasicontinuous at p, there exists a $\delta > 0$ such that

$$\begin{aligned} \left| f_N(x) - f_N(p) \right| &< \varepsilon \ \forall \ x \in (p - \delta, p) \subset J \\ &\in (p - \delta, p) \Longrightarrow \ \left| f(x) - f_N(p) \right| = \left| f(x) - f_N(x) + f_N(x) - f_N(p) \right| \\ &\leq \left| f(x) - f_N(x) \right| + \left| f_N(x) - f_N(p) \right| \end{aligned}$$

© JGRMA 2013, All Rights Reserved

х

$$<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon$$

Thus for every $\varepsilon > 0$ there exists a $\delta > 0$ such that

$$|f(x)-f_N(p-)| < \varepsilon \quad \forall x \in (p-\delta,p) \subset J.$$

Hence f(p-) exists for every $p \in (a,b]$.

Since each f_n is continuous at a and $f_n \rightarrow f$ uniformly on J, f is continuous at a. Hence f is -Quasicontinuous on J.

2.3 Remark: It is not necessary that a ⁻Quasicontinuous function defined on a compact domain is bounded. It can be seen from the following example.

2.4 Example: Define $f:[-1,1] \rightarrow \Box$ by $f(x) = \begin{cases} 1 & if \quad -1 \le x \le 0\\ \frac{1}{x} & if \quad 0 < x \le 1 \end{cases}$

This function f is -Quasicontinuous on [-1,1] but it is not bounded.

2.5 Remark: We denote the set of all bounded real valued \neg Quasicontinuous functions defined on I by the symbol $\mathscr{CC}^-(I)$. By the propositions 2.1 and 2.2 it follows that $\mathscr{CC}^-(I)$ forms a commutative Banach algebra with identity under the supremum norm, where the identity $e: I \rightarrow \Box$ is defined by $e(x) = 1 \forall x \in I$.

2.6 Proposition: Let $f: J \to \Box$ and $p \in J$. If f(p-) exists then f is cliquish at p.

Proof: Let $\varepsilon > 0$ be given and let U be a neighborhood of p in J. Then there exists a $\delta_1 > 0$ such that $(p - \delta_1, p + \delta_1) \cap J \subset U$.

Given f(p-) exists. So there exists a $\delta_2 > 0$ such that

$$|f(x)-f(p-)| < \frac{\varepsilon}{2} \quad \forall x \in (p-\delta_2, p) \subset J.$$

Put $\delta = \min{\{\delta_1, \delta_2\}}$ and $W = (p - \delta, p)$.

Then for $x, y \in W$, we have |f(x) - f(y)| = |f(x) - f(p-) + f(p-) - f(y)|

$$\leq |f(x) - f(p)| + |f(y) - f(p)|$$

$$<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon$$

© JGRMA 2013, All Rights Reserved

Thus for every $\varepsilon > 0$ and every neighborhood U of p, there exists a non-empty open set $W \subset U$ such that $|f(x) - f(y)| < \varepsilon$, $\forall x, y \in W$

$$|f(x) - f(y)| < \varepsilon \quad \forall \ x, y \in W$$

 $\Rightarrow f$ is cliquish at p.

2.7 Remark: From the above proposition it is clear that every [–]Quasicontinuous function is cliquish. The converse is not true as is evident from the following example.

2.8 Example: Define $f: [-1,1] \rightarrow \Box$ as follows.

$$\mathbf{f}(x) = \begin{cases} \frac{1}{x} & \text{if } -1 \le x < 0\\ 0 & \text{if } 0 \le x \le 1 \end{cases}$$

Clearly f is cliquish at x = 0 but it is not –Quasicontinuous.

2.9 Theorem [2]: If $f: J \to \Box$ is ⁻Quasicontinuous then the set of points of discontinuity of f is atmost countable.

3. Maximal Ideals in $\mathcal{C}\mathcal{E}^{-}(I)$

3.1 Definition: For each $x \in I$, we define the following.

(a) $M_x = \{ f \in \mathcal{C} \mathcal{C}^-(I) / f(x) = 0 \}$ (b) $M_x^- = \{ f \in \mathcal{C} \mathcal{C}^-(I) / f(x) = 0 \}.$

3.2 Proposition: For each $x \in I$, the sets M_x and M_x^- are maximal ideals in the commutative Banach algebra $\mathcal{OE}^-(I)$.

Proof: For $x \in I$, define F_x and F_x^- on $\mathscr{C}^-(I)$ by $F_x(f) = f(x)$ and $F_x^-(f) = f(x-)$ for $f \in \mathscr{C}^-(I)$.

Clearly F_x and F_x^- are multiplicative linear functionals in the dual space \mathscr{B}_- with kernels M_x and $M_x^$ respectively. Hence M_x and M_x^- are ideals. Moreover M_x and M_x^- are maximal ideals in $\mathscr{CC}^-(I)$. **3.3 Proposition:** If M is a maximal ideal in $\mathscr{CC}^-(I)$ then either $M = M_x$ or $M = M_x^-$ for some $x \in I$. **Proof:** For $x \in I$, define F_x and F_x^- on $\mathscr{CC}^-(I)$ by $F_x(f) = f(x)$ and $F_x^-(f) = f(x-)$ for $f \in \mathscr{CC}^-(I)$

Clearly F_x and F_x^- are multiplicative linear functionals in the dual space \mathcal{B}_- with kernels M_x and M_x^- respectively. Hence M_x and M_x^- are ideals. Moreover M_x and M_x^- are maximal ideals in $\mathcal{CC}^-(I)$. **3.3 Proposition:** If M is a maximal ideal in $\mathcal{CC}^-(I)$ then either $M = M_x$ or $M = M_x^-$ for some $x \in I$. **Proof:** Assume that $M \neq M_x$ and $M \neq M_x^-$ for any $x \in I$. Then there exist f_x and g_x in M such that $f_x \notin M_x$ and $g_x \notin M_x^-$.

Define $\varphi_x: I \to \Box$ by $\varphi_x(t) = f_x^2(t) + g_x^2(t-) \quad \forall t \in I$.

Clearly $\varphi_x \in \mathscr{C}^{-}(I)$. Since φ_x is Quasicontinuous at x and $\varphi_x(x) > 0$, there exists a $\delta_x > 0$ such that $\varphi_x(t) > 0 \quad \forall t \in (\delta_x, 1]$ and for $x \neq 0$.

We have $\varphi_0(t) = f_0^2(t) + g_0^2(t-) \quad \forall t \in I$.

Since φ_0 is continuous at 0 and $\varphi_0(0) > 0$ there exists a $\delta > 0$ such that $\varphi_0(t) > 0 \forall t \in [0, \delta)$. Then

 $[0,1] = \left(\bigcup_{x\neq 0} (\delta_x, 1]\right) \cup [0,\delta].$ Since *I* is compact, there exists an $x_0 \neq 0$ in *I* such that $[0,1] = (\delta_{x_0}, 1] \cup [0,\delta].$

Put $\varphi = \varphi_{x_0}^2 + \varphi_0^2$. Then $\varphi \in M$ and $\varphi(t) > 0 \ \forall t \in I \implies \frac{1}{\varphi} \in M$.

Then $e = \varphi \cdot \frac{1}{\varphi} \in M$. This is a contradiction, Hence it follows that $M = M_x$ or $M = M_x^-$ for some $x \in I$.

3.4 Remark: Let \mathcal{M}_{-} be the space of all maximal ideals in $\mathcal{CC}^{-}(I)$. Then \mathcal{M}_{-} is a compact Hausdorff space with the weak^{*} topology on $\mathcal{CC}^{-}(I)$. Hence $\mathcal{M}_{-}^{2} = \mathcal{M}_{-} \times \mathcal{M}_{-}$ is a compact Hausdorff space with the product topology on $\mathcal{CC}^{-}(I) \times \mathcal{CC}^{-}(I)$.

3.5 Proposition: Let $\mathscr{A}^- = \{ (M_x, M_x^-) | x \in I \}$. Then there exists a one-to-one correspondence between I and \mathscr{A}^- .

Proof: Define $\Psi^-: I \to \mathscr{A}^-$ by $\Psi^-(x) = (M_x, M_x^-)$.

Clearly Ψ^- is surjective. If $0 \le s < t \le 1$, the function

$$\Psi_{0}^{-}(p) = \begin{cases} 0 & \text{if } 0 \le p \le t \\ \frac{1}{p-t} & \text{if } t$$

satisfies $\Psi_0^- \in M_t$ and $\Psi_0^- \notin M_s$.

$$\implies M_s \neq M_t$$

$$\Rightarrow (M_s, M_s^-) \neq (M_t, M_t^-)$$

$$\Rightarrow \Psi^{-}(s) \neq \Psi^{-}(t)$$

Hence Ψ^- is 1-1.

Hence Ψ^- is a one-to-one correspondence between I and \mathscr{A}^- .

3.6 Remark: Each maximal ideal in $\mathcal{CC}^{-}(I)$ is the kernel of some multiplicative linear functional on $\mathcal{CC}^{-}(I)$, hence can be identified with a multiplicative linear functional on $\mathcal{CC}^{-}(I)$. Let M_x and M_x^{-} be identified with the multiplicative linear functional F_x and F_x^{-} respectively. So we can write

$$\mathscr{I}^{-} = \left\{ \left(F_x, F_x^{-} \right) / x \in I \right\}$$

3.7 Proposition: \mathscr{A}^- is closed in $\mathscr{B}_-^2 = \mathscr{B}_- \times \mathscr{B}_-$ and hence compact.

Proof: We prove that \mathscr{I} is closed. Compactness is an immediate consequence of the Banach – Alaoglu theorem [5]. If $F = (F_1, F_2) \in \mathscr{B}_-^2$, we define $||F|| = \max\{||F_1||, ||F_2||\}$. Then \mathscr{B}_-^2 is a Banach space under the above norm.

Let $S = \{F \mid ||F|| \le 1\} \subseteq \mathcal{B}_{-}^{2}$. Put $\mathcal{A} = \mathscr{A}^{-} \cup \{O\}$. Then $\mathscr{A}^{-} \subset \mathscr{M}^{2} \subset \mathcal{A} \subset S \subset \mathcal{B}^{2}$.

Define $\mathcal{P}^-: \mathcal{A} \to \Box$ by

$$\mathcal{P}^{-}(F) = \begin{cases} 1 & \text{if } F \in \mathcal{A} \text{ and } F \neq O \\ 0 & \text{if } F = O \end{cases}$$

Since \mathcal{P}^- is continuous, \mathscr{A}^- and \mathcal{A} are closed in \mathcal{B}^2_- .

4. Further Properties

4.1 Proposition: Fix $f \in \mathscr{C}^{-}(I)$. Define $\psi_f : I \to \Box^2$ by $\psi_f(x) = (f(x), f(x-))$, where $\Box^2 = \Box \times \Box$ is considered with the norm $||(x_1, x_2)|| = \max\{|x_1|, |x_2|\}$. Then ψ_f is continuous on I if and only if f is continuous on I.

Proof: Assume that ψ_f is continuous on I. Let $p \in I$ and let $\varepsilon > 0$ be given. Since ψ_f is continuous at p, there exists a $\delta > 0$ such that $\|\psi_f(x) - \psi_f(p)\| < \varepsilon \quad \forall x \in (p - \delta, p + \delta) \cap I$. $\Rightarrow \|(f(x), f(x-)) - (f(p), f(p-))\| < \varepsilon \quad \forall x \in (p - \delta, p + \delta) \cap I$ $\Rightarrow \|(f(x) - f(p), f(x-) - f(p-))\| < \varepsilon \quad \forall x \in (p - \delta, p + \delta) \cap I$

 $\Rightarrow \max\{|f(x) - f(p)|, |f(x) - f(p)|\} < \varepsilon \quad \forall \ x \in (p - \delta, p + \delta) \cap I$

$$\Rightarrow |f(x) - f(p)| < \varepsilon \quad \forall \ x \in (p - \delta, p + \delta)$$

 \Rightarrow f is continuous at p.

Thus if ψ_f is continuous at p then f is continuous at p.

Conversely suppose that f is continuous on I. © JGRMA 2013, All Rights Reserved Then $\psi_f(x) = (f(x), f(x)) \quad \forall x \in I$.

Hence ψ_f continuous on *I*.

4.2 Proposition: Let $\mathbf{B} = \{ \psi_f \mid f \in \mathcal{C} \mathcal{C}^-(I) \}$. Define $F : \mathcal{C} \mathcal{C}^-(I) \to \mathbf{B}$ by $F(f) = \psi_f$. Then F is a one-

to-one continuous multiplicative linear mapping from $\mathcal{C}\mathcal{C}^{-}(I)$ onto **B**.

Proof: Clearly $F: \mathscr{C}\!\!\mathscr{C}^{-}(I) \to \mathbf{B}$ is surjective.

For
$$f, g \in \mathcal{CC}^{-}(I), \psi_{f+g}(x) = ((f+g)(x), (f+g)(x-))$$

= $(f(x), f(x-)) + (g(x), g(x-))$
= $\psi_f(x) + \psi_g(x) \quad \forall x \in I$

Hence $\psi_{f+g} = \psi_f + \psi_g \quad \forall \quad f, g \in \mathcal{O} \mathcal{C}^{-}(I)$

$$\Rightarrow F(f+g) = F(f) + F(g) \forall f, g \in \mathcal{C} \mathcal{C}^{-}(I).$$

Let $c \in \Box$. It is easy to see that $F(cf) = \psi_{cf} = c\psi_f = cF(f) \quad \forall f \in \mathcal{C} \mathcal{C}^{-}(I)$.

Hence F is linear.

Also we have $\psi_{fg}(x) = ((fg)(x), (fg)(x-))$ = (f(x), f(x-)) (g(x), g(x-)) $= \psi_f(x) \psi_g(x) \quad \forall \ x \in I.$ Hence $F(fg) = \psi_{fg} = \psi_f \psi_g = F(f)F(g).$

 \Rightarrow F is multiplicative. Now we prove that F is 1 – 1. For this, suppose that

$$\begin{split} F(f) &= F(g) \implies \psi_f = \psi_g \\ \implies \psi_f(x) = \psi_g(x) \quad \forall \ x \in I \\ \implies (f(x), f(x-)) = (g(x), g(x-)) \quad \forall \ x \in I \\ \implies f(x) = g(x) \quad \forall \ x \in I \\ \implies f = g \; . \end{split}$$

Hence F is 1-1.

Suppose that $f_n \in \mathscr{C}^{-}(I), n = 1, 2, 3, ..., \text{ and } f \in \mathscr{C}^{-}(I).$

Let $f_n \to f$ uniformly on I. Then for a given $\varepsilon > 0$ there exists an integer N > 0 such that $|f_n(x) - f(x)| < \frac{\varepsilon}{3}$ for all $n \ge N$ and all $x \in I$. Fix $x \in I$ and $n \ge N$. Since f_n is Quasicontinuous there exists a $\delta_1 > 0$ such that

$$|f_n(t)-f_n(x-)| < \frac{\varepsilon}{3} \quad \forall t \in (x-\delta_1,x).$$

Since f is also Quasicontinuous at x, there exists a $\delta_2 > 0$ such that

$$|f(t)-f(x-)| < \frac{\varepsilon}{3} \quad \forall t \in (x-\delta_2, x).$$

Put $\delta = \min\{\delta_1, \delta_2\}$. Then for $t \in (x - \delta, x)$ and $n \ge N$,

$$\begin{split} \left| f_n(x-) - f(x-) \right| &= \left| f_n(x-) - f_n(t) + f_n(t) - f(t) + f(t) - f(x-) \right| \\ &\leq \left| f_n(x-) - f_n(t) \right| + \left| f_n(t) - f(t) \right| + \left| f(t) - f(x-) \right| \\ &< \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon \,. \end{split}$$

Hence $|f_n(x-) - f(x-)| < \varepsilon$ for all $n \ge N$ and all $x \in I$.

$$n \ge N \implies ||F(f_n) - F(f)|| = ||\psi_{f_n} - \psi_f||$$
$$= \sup\{||\psi_{f_n}(x) - \psi_f(x)|| / x \in I\} < \varepsilon.$$

 \Rightarrow $F(f_n) \rightarrow F(f)$ Uniformly on I.

Hence F is continuous on $\mathcal{O}\mathcal{C}^{-}(I)$.

4.3 Proposition: The set $\mathbf{B} = \{\psi_f \mid f \in \mathcal{O}(I)\}$ is a commutative Banach algebra with identity ψ_e under the norm defined by $\|\psi_f\| = \sup\{\|\psi_f(x)\| \mid x \in I\}$, where $\psi_e(x) = (1,1) \quad \forall x \in I$.

REFERENCES

- [1.] Borsik, J., Points of continuity, Quasicontinuity and Cliquishness, Pervento in redazoine, pp. 5 20, 1993.
- [2.] Gal, I. S., On the Continuity and Limiting Values of functions, Proc. American Math. Soc, 86, pp. 321 334, 1957.
- [3.] Goffman, C. And Pedrick, G., *First Course in Functional Analysis*, Prentice Hall of India Pvt., Ltd., New Delhi, 1974.
- [4.] Ramabhadrasarma, I. and Srinivasa kumar, V., On the Maximal Ideals in the Banach space of Quasicontinuous functions, International Review of Pure and Applied Mathematics, Vol. 6, No. 1, pp. 41 – 45, 2010.
- [5.] Rudin, W., Functional Analysis, Tata McGraw Hill, New York, 1974.

[6.] Van Rooij, A. C. M. and Schikhof, W. H., A second Course on Real functions, Cambridge University Press, Cambridge, 1982.