

Volume 1, No. 3, March 2013 Journal of Global Research in Mathematical Archives RESEARCH PAPER

Available online at http://www.jgrma.info

INTUITIONISTIC FUZZY CONTRA π GENERALIZED SEMI OPEN MAPPINGS IN INTUITIONISTIC FUZZY TOPOLOGICAL SPACES

K.Ramesh^{*1} and S.Maragathavalli²

*1Assistant Professor, Department of Mathematics S.V.S College of Engineering Coimbatore, Tamil Nadu (INDIA)

E.mail; rameshfuzzy@gmail.com

²Associate Professor, Department of Mathematics Sree Saraswathi Thyagaraja College Pollachi, Tamil Nadu (INDIA)

Email: smvalli@rediffmail.com

Abstract: In this paper we introduce intuitionistic fuzzy contra π generalized semi open mappings, intuitionistic fuzzy contra π generalized semi closed mappings and intuitionistic fuzzy contra $M\pi$ -generalized semi open mappings in intuitionistic fuzzy topological spaces and some of their basic properties are studied.

Keywords: Intuitionistic fuzzy topology, intuitionistic fuzzy contra π generalized semi open mappings, intuitionistic fuzzy contra π generalized semi closed mappings and intuitionistic fuzzy contra M π -generalized semi open mappings.

AMS Subject Classification: 03F55.

INTRODUCTION

Zadeh [15] introduced the notion of fuzzy sets. After which there have been a number of generalizations on this fundamental concept. The notion of intuitionistic fuzzy sets introduced by Atanassov [1] is one among them. Using the notion of intuitionistic fuzzy sets, Coker [2] introduced the notion of intuitionistic fuzzy topological space. In this paper we introduce the notion of intuitionistic fuzzy contra π generalized semi open mappings and intuitionistic fuzzy contra π generalized semi closed mappings. We also introduce intuitionistic fuzzy contra $M\pi$ -generalized semi open mappings. We investigate some of their properties and arrive at some characterizations of intuitionistic fuzzy contra π - generalized semi open mappings and intuitionistic fuzzy contra π - generalized semi open mappings.

PRELIMINARIES

Definition 2.1: [1] Let X be a non empty fixed set. An intuitionistic fuzzy set (IFS in short) A in X is an object having the form $A = \{ \langle x, \mu_A(x), \nu_A(x) \rangle / x \in X \}$ where the values $\mu_A(x)$: $X \rightarrow [0, 1]$ and $\nu_A(x)$: $X \rightarrow [0, 1]$ denote the degree of membership (namely $\mu_A(x)$) and the degree of non -membership (namely $\nu_A(x)$) of each element $x \in X$ to the set A, respectively, and $0 \le \mu_A(x) + \nu_A(x) \le 1$ for each $x \in X$. Denote the set of all intuitionistic fuzzy sets in X by IFS (X).

Definition 2.2: [1] Let A and B be IFS's of the form $A = \{\langle x, \mu_A(x), \nu_A(x) \rangle / x \in X\}$ and

B = { $\langle x, \mu_B(x), \nu_B(x) \rangle / x \in X$ }. Then

(a) $A \subseteq B$ if and only if $\mu_A(x) \le \mu_B(x)$ and $\nu_A(x) \ge \nu_B(x)$ for all $x \in X$,

(b) A = B if and only if $A \subseteq B$ and $B \subseteq A$,

(c) $A^c = \{ \langle x, v_A(x), \mu_A(x) \rangle / x \in X \},\$

 $(d) \ A \cap B = \{ \big\langle \ x, \ \mu_A(x) \land \mu_B(x), \ \nu_A(x) \lor \nu_B(x) \ \big\rangle \ / \ x \in X \},$

 $(e) \ A \cup B = \{ \langle \ x, \ \mu_A(x) \lor \mu_B(x), \nu_A(x) \land \nu_B(x) \ \rangle \ / \ x \in X \}.$

For the sake of simplicity, we shall use the notation $A = \langle x, \mu_A, \nu_A \rangle$ instead of $A = \{ \langle x, \mu_A(x), \nu_A(x) \rangle / x \in X \}$ and $A = \langle x, (\mu_A, \mu_B), (\nu_A, \nu_B) \rangle$ instead of $A = \langle x, (A/\mu_A, B/\mu_B), (A/\nu_A, B/\nu_B) \rangle$. The intuitionistic fuzzy sets $0_{-} = \{ \langle x, 0, 1 \rangle / x \in X \}$ and $1_{-} = \{ \langle x, 1, 0 \rangle / x \in X \}$ are respectively the empty set and the whole set of X.

Definition 2.3: [2] An intuitionistic fuzzy topology (IFT in short) on a non empty set X is a family τ of IFS in X satisfying the following axioms:

(a) $0_{\sim}, 1_{\sim} \in \tau$

(b) $G_1 \cap G_2 \in \tau$, for any $G_1, G_2 \in \tau$

(c) \cup G_i $\in \tau$ for any arbitrary family {G_i / i \in J} $\subseteq \tau$.

In this case the pair (X, τ) is called an intuitionistic fuzzy topological space (IFTS in short) and any IFS in τ is known as an intuitionistic fuzzy open set (IFOS for short) in X.

The complement A^{c} of an IFOS A in an IFTS (X, τ) is called an intuitionistic fuzzy closed set (IFCS for short) in X.

Definition 2.4: [2] Let (X, τ) be an IFTS and $A = \langle x, \mu_A, \nu_A \rangle$ be an IFS in X. Then the intuitionistic fuzzy interior and an intuitionistic fuzzy closure are defined by

 $int(A) = \bigcup \{ G / G \text{ is an IFOS in } X \text{ and } G \subseteq A \},\$

 $cl(A) = \cap \{ K / K \text{ is an IFCS in } X \text{ and } A \subseteq K \}.$

Note that for any IFS A in (X, τ) , we have $cl(A^c) = [int(A)]^c$ and $int(A^c) = [cl(A)]^c$.

Definition 2.5: An IFS A = $\langle x, \mu_A, \nu_A \rangle$ in an IFTS (X, τ) is said to be an

(i) [12]intuitionistic fuzzy semi closed set (IFSCS in short) if $int(cl(A)) \subseteq A$,

(ii) [10] intuitionistic fuzzy α -closed set (IF α CS in short) if cl(int(cl(A))) \subseteq A,

(iii)[11] intuitionistic fuzzy pre closed set (IFPCS in short) if $cl(int(A)) \subseteq A$.

The family of all IFSCSs, IF α CSs and IFPCSs (respectively IFSOSs, IF α OSs and IFPOSs) of an IFTS (X, τ) is denoted by IFSC(X), IF α C(X) and IFPC(X) (respectively IFSO(X), IF α O(X) and IFPO(X)).

Definition 2.6: [14] Let A be an IFS in an IFTS (X, τ) . Then

 $sint(A) = \bigcup \{ G / G \text{ is an IFSOS in } X \text{ and } G \subseteq A \},$

 $scl(A) = \cap \{ K / K \text{ is an IFSCS in } X \text{ and } A \subseteq K \}.$

Note that for any IFS A in (X, τ) , we have $scl(A^c)=(sint(A))^c$ and $sint(A^c)=(scl(A))^c$.

Definition 2.7: [13] The IFS $c(\alpha, \beta) = \langle x, c_{\alpha}, c_{1-\beta} \rangle$ where $\alpha \in (0, 1]$, $\beta \in [0, 1)$ and $\alpha + \beta \le 1$ is called an intuitionistic fuzzy point (IFP) in X.

Definition 2.8: [13] Two IFSs are said to be q-coincident (A q B) if and only if there exists an element $x \in X$ such that $\mu_A(x) > \nu_B(x)$ or $\nu_A(x) < \mu_B(x)$.

Definition 2.9:[13] An IFS A in an IFTS (X, τ) is an intuitionistic fuzzy generalized closed set (IFGCS in short) if cl(A) \subseteq U whenever A \subseteq U and U is an IFOS in X.

Definition 2.10:[9] An IFS A in an IFTS (X, τ) is said to be an intuitionistic fuzzy generalized semi closed set (IFGSCS in short) if scl(A) \subseteq U whenever A \subseteq U and U is an IFOS in (X, τ).

Definition 2.11:[9] An IFS A is said to be an intuitionistic fuzzy generalized semi open set (IFGSOS in short) in X if the complement A^c is an IFGSCS in X.

Definition 2.12:[4] An IFS A in an IFTS (X, τ) is said to be an intuitionistic fuzzy π - generalized semi closed set (IF π GSCS in short) if scl(A) \subseteq U whenever A \subseteq U and U is an IF π OS in (X, τ).

Result 2.13:[8] Every IFCS, IFGCS, IFRCS, IF α CS, IFGSCS is an IF π GSCS but the converses may not be true in general.

Definition 2.14: [6] Let A be an IFS in an IFTS (X, τ) . Then π gsint(A) = \cup { G / G is an IF π GSOS in X and G \subseteq A }, π gscl(A) = \cap { K / K is an IF π GSCS in X and A \subseteq K }.

Definition 2.15:[5] An IFTS (X, τ) is said to be an intuitionistic fuzzy $\pi T_{1/2}$ (IF $\pi T_{1/2}$ in short) space if every IF π GSOS in X is an IFOS in X.

Definition 2.16:[5] An IFTS (X, τ) is said to be an intuitionistic fuzzy $\pi a T_{1/2}$ (IF $\pi a T_{1/2}$ in short) space if every IF π GSCS in X is an IFCS in X.

Definition 2.17:[5] An IFTS (X, τ) is said to be an intuitionistic fuzzy $\pi bT_{1/2}$ (IF $\pi bT_{1/2}$ in short) space if every IF π GSCS in X is an IFGCS in X.

Definition 2.18:[5] An IFTS (X, τ) is said to be an intuitionistic fuzzy $\pi cT_{1/2}$ (IF $\pi cT_{1/2}$ in short) space if every IF π GSCS in X is an IFGSCS in X.

3. INTUITIONISTIC FUZZY CONTRA π GENERALIZED SEMI OPEN MAPPINGS

In this section we have introduced intuitionistic fuzzy contra π generalized semi open mappings. We investigated some of its properties.

Definition 3.1: A mapping f: $X \to Y$ is said to be an intuitionistic fuzzy contra π generalized semi open mapping (IFC π GSOM in short) if f(A) is an IF π GSCS in (Y, σ) for every IFOS A in (X, τ) .

Example 3.2: Let $X = \{a, b\}$, $Y = \{u, v\}$ and $G_1 = \langle x, (0.5_a, 0.4_b), (0.5_a, 0.6_b) \rangle$, $G_2 = \langle y, (0.6_u, 0.7_v), (0.4_u, 0.3_v) \rangle$. Then $\tau = \{0, ..., v\}$ G_1 1₂ and $\sigma = \{0_{\tau}, G_2, 1_{\tau}\}$ are IFTs on X and Y respectively. Define a mapping f: $(X, \tau) \rightarrow (Y, \sigma)$ by f (a) = u and f (b) = v. Then f is an IFC π GSOM.

Definition 3.3: A mapping $f: (X, \tau) \to (Y, \sigma)$ is called an intuitionistic fuzzy contra π generalized semi closed mapping (IFC π GS closed in short) if for every IFCS A of (X, τ), f(A) is an IF π GSOS in (Y, σ).

Definition 3.4: An IFTS (X, τ) is said to be an intuitionistic fuzzy $\pi dT_{1/2}$ (IF $\pi dT_{1/2}$ in short) space if every IF π GSCS in X is an IFSCS in X.

Theorem 3.5: For a bijective mapping f: $X \rightarrow Y$, where Y is an IF $\pi dT_{1/2}$ space, the following are equivalent.

- f is an IFC π GSOM (i)
- (ii) for every IFCS A in X, f(A) is an IF π GSOS in Y
- for every IFOS B in X, f(B) is an IF π GSCS in Y (iii)
- for any IFCS A in X and for any IFP $c(\alpha, \beta) \in Y$, if $f^{-1}(c(\alpha, \beta)) \circ A$, then $c(\alpha, \beta) \circ sint(f(A))$ (iv)
- For any IFCS A in X and for any $c(\alpha, \beta) \in Y$, if $f^{-1}(c(\alpha, \beta)) = A$, then there exists an IF π GSOS B such that $c(\alpha, \beta) = A$ (v) B and $f^{-1}(B) \subseteq A$.

Proof: (i) \Rightarrow (ii) Let A be an IFCS in X. Then A^c is an IFOS in X. By hypothesis, $f(A^c)$ is an IF π GSCS in Y. That is $f(A)^c$ is an

IF π GSCS in Y. Hence f(A) is an IF π GSOS in Y.(ii) \Rightarrow (i) Let A be an IFOS in X. Then A^c is an IFCS in X. By hypothesis, f(A^c)

= $[f(A)]^c$ is an IF π GSOS in Y. Hence f(A) is an IF π GSCS in Y. Thus f is an IF $c\pi$ GSOM.(ii) \Leftrightarrow (iii) is obvious.(ii) \Rightarrow (iv) Let A

 \subseteq X be an IFCS and let $c(\alpha, \beta) \in Y$. Let $f^{-1}(c(\alpha, \beta)) \circ A$. Then $c(\alpha, \beta) \circ f(A)$. By hypothesis, f(A) is an IF π GSOS in Y. Since Y is

an IF $\pi dT_{1/2}$ space, f(A) is an IFSOS in Y. This implies sint(f(A)) = f(A). Hence $c(\alpha, \beta)_{\alpha} sint(f(A))$. (iv) \Rightarrow (ii) Let A \subseteq X be an

IFCS and let $c(\alpha, \beta) \in Y$ Let $f^{-1}(c(\alpha, \beta))_q A$. Then $c(\alpha, \beta)_q f(A)$. By hypothesis this implies $c(\alpha, \beta)_q sint(f(A))$. That is $f(A) \subseteq C(\alpha, \beta)_q sint(f(A))$.

 $sint(f(A)) \subseteq f(A)$. Therefore f(A) = sint(f(A)) is an IFSOS in Y and hence an IF π GSOS in Y. (iv) \Rightarrow (v) Let A \subseteq X be an IFCS

 $c(\alpha, \beta) \in Y$. Let $f^{-1}(c(\alpha, \beta))_{\alpha} A$. Then $c(\alpha, \beta)_{\alpha} f(A)$. This implies $c(\alpha, \beta)_{\alpha} sint(f(A))$. Thus f(A) is an IFSOS in Y and and let © JGRMA 2013, All Rights Reserved 50

hence an IF π GSOS in Y. Let f(A) = B. Therefore $c(\alpha, \beta) = B$ and $f^{-1}(B) = f^{-1}(f(A)) = A$, since f is a bijective mapping. (v) \Rightarrow (iv)

Let $A \subseteq X$ be an IFCS and let $c(\alpha, \beta) \in Y$ Let

 $f^{-1}(c(\alpha, \beta))_q A$. Then $c(\alpha, \beta)_q f(A)$. By hypothesis there exists an

IF π GSOS B in Y such that $c(\alpha, \beta)_q$ B and $f^{-1}(B) \subseteq A$. Let B = f(A). Then $c(\alpha, \beta)_q f(A)$. Since Y is an IF $\pi dT_{1/2}$ space, f(A) is an

IFSOS in Y. Therefore $c(\alpha, \beta)_q \operatorname{sint}(f(A))$.

Theorem 3.6: Let f: $X \rightarrow Y$ be a bijective mapping. Suppose that one of the following properties hold.

(i) $f^{-1}(scl(A)) \subseteq int(f^{-1}(A))$ for each IFS A in Y

- (ii) $scl(f(B)) \subset f(int(B))$ for each IFS B in X
- (iii) $f(cl(B)) \subset sint(f(B))$ for each IFS B in X

Then f is an IFC π GSOM.

Proof: (i) \Rightarrow (ii) Let $B \subseteq X$. Then f(B) is an IFS in Y. By hypothesis, $f^{-1}(scl(f(B))) \subseteq int(f^{-1}(f(B))) = int(B)$. Now $scl(f(B)) = f(f^{-1}(scl(f(B)))) \subseteq f(int(B))$. (ii) \Rightarrow (iii) is obvious by taking complement in (ii). Suppose (iii) holds. Let A be an IFCS in X. Then cl(A) = A and f(A) is an IFS in Y. Now $f(A) = f(cl(A)) \subseteq sint(f(A)) \subseteq f(A)$, by hypothesis. This implies f(A) is an IFSOS in Y and hence an IF π GSOS in Y. Thus f is an IFC π GSOM by Theorem 3.5.

Theorem 3.7: Let f: X \rightarrow Y be a bijective mapping. Then f is an IFC π GSOM if cl(f⁻¹(A)) \subseteq f⁻¹(sint(A)) for every IFS A in Y. **Proof:** Let A be an IFCS in X. Then cl(A) = A and f(A) is an IFS in Y. By hypothesis cl(f⁻¹(f(A))) \subseteq f⁻¹(sint(f(A))). Since f is one to one f⁻¹(f(A)) = A. Therefore A = cl(A) = cl(f⁻¹(f(A))) \subseteq f⁻¹(sint(f(A))). Now f(A) \subseteq f(f⁻¹(sint(f(A))) \subseteq f(A). Hence f(A) is an IFSOS in Y and hence an IF π GSOS in Y. Thus f is an IFC π GSOM by Theorem 3.5.

Theorem 3.8: If f: X \rightarrow Y is an IFC π GSOM, where Y is an IF $\pi dT_{1/2}$ space, then the following conditions hold.

- (i) $scl(f(B)) \subset f(int(scl(B)))$ for every IFOS B in X
- (ii) $f(cl(sint(B))) \subseteq sint(f(B))$ for every IFCS B in X

Proof: (i) Let $B \subseteq X$ be an IFOS. Then int(B) = B. By hypothesis f (B) is an IF π GSCS in Y. Since Y is an IF $\pi dT_{1/2}$ space, f(B) is an IFSCS in Y. This implies scl(f(B)) = f(B) = f(int(B)) \subseteq f(int(scl(B))). (ii) can be proved easily by taking complement in (i).

Theorem 3.9: A mapping f: X \rightarrow Y is an IFC π GSOM if f(scl(B)) \subseteq int(f(B)) for every IFS B in X. **Proof:** Let B \subseteq X be an IFCS. Then cl(B) = B. Since every IFCS is an IFSCS, scl(B) = B. Now by hypothesis, f(B) = f(scl(B)) \subseteq int(f(B)) \subseteq f(B). This implies f(B) is an IFOS in Y. Therefore f(B) is an IF π GSOS in Y. Hence f is an IFC π GSOM.

Theorem 3.10: A mapping $f : X \to Y$ is an IFC π GSOM, where Y is an IF $\pi dT_{1/2}$ space if and only if $f(scl(B)) \subseteq sint(f(cl(B)))$ for every IFS B in X.

Proof: Necessity: Let $B \subseteq X$ be an IFS. Then cl(B) is an IFCS in X. By hypothesis, f(cl(B)) is an IF π GSOS in Y. Since Y is an IF $\pi dT_{1/2}$ space, f(cl(B)) is an IFSOS in Y. Therefore $f(scl(B)) \subseteq f(cl(B)) = sint(f(cl(B)))$.

Sufficiency: Let $B \subseteq X$ be an IFCS. Then cl(B) = B. By hypothesis, $f(scl(B)) \subseteq sint(f(cl(B))) = sint(f(B))$. But scl(B) = B. Therefore $f(B) = f(scl(B)) \subseteq sint(f(B) \subseteq f(B))$. This implies f(B) is an IFSOS in Y and hence an IF π GSOS in Y. Hence f is an IFC π GSOM.

Theorem 3.11: An IFOM f: $X \rightarrow Y$ is an IFC π GSOM if IF π GSO(Y) = IF π GSC(Y). **Proof:** Let A \subseteq X be an IFOS. By hypothesis, f(A) is an IFOS in Y and hence is an IF π GSOS in Y. By assumption f(A) is an IF π GSCS in Y. Therefore f is an IFC π GSOM.

Definition 3.12: A mapping f: $X \rightarrow Y$ is said to be an intuitionistic fuzzy contra M π -generalized semi open mapping (IFCM π GSOM) if f(A) is an IF π GSCS in Y for every IF π GSOS A in X.

Example 3.13: Let $X = \{a, b\}$, $Y = \{u, v\}$ and $G_1 = \langle x, (0.5_a, 0.6_b), (0.5_a, 0.4_b) \rangle$, $G_2 = \langle y, (0.2_u, 0.3_v), (0.8_u, 0.7_v) \rangle$. Then $\tau = \{0_{-}, G_{1,}, 1_{-}\}$ and $\sigma = \{0_{-}, G_{2,}, 1_{-}\}$ are IFTs on X and Y respectively. Define a mapping f: $(X, \tau) \rightarrow (Y, \sigma)$ by f (a) = u and f (b) = v. Then f is an IFCM π GSOM.

Theorem 3.14: Let $f: X \rightarrow Y$ be a bijective mapping. Then the following are equivalent.

- (i) f is an IFCM π GSOM
- (ii) f(A) is an IF π GSOS in Y for every IF π GSCS A in X

© JGRMA 2013, All Rights Reserved

Proof: (i) \Rightarrow (ii) Let A be an IF π GSCS in X. Then A^c is an IF π GSOS in X. By hypothesis, f(A^c) is an IF π GSCS in Y. That is f(A)^c is an IF π GSCS in Y. Hence f(A) is an IF π GSOS in Y. (ii) \Rightarrow (i) Let A be an IF π GSOS in X. Then A^c is an IF π GSCS in X. By hypothesis, f(A^c) = [f(A)]^c is an IF π GSOS in Y. Hence f(A) is an IF π GSOS in Y. Thus f is an IF π GSOS.

Theorem 3.15: Let $f : (X, \tau) \to (Y, \sigma)$ be a mapping from an IFTS X into an IFTS Y. Then the following conditions are equivalent if Y is an IF $\pi_a T_{1/2}$ space:

- (i) f is an IFC π GSCM
- (ii) f is an IFC π GSOM
- (iii) $int(cl(f(A))) \subseteq (f(A))$ for every IFOS A in X.

Proof: (i) \Rightarrow (ii): It is obviously true. (ii) \Rightarrow (iii): Let A be an IFOS in X. Then f(A) is an IF π GSCS in Y. Since Y is an IF π_a T_{1/2} space, f(A) is an IFCS in Y. Therefore cl(f(A)) = f(A). This implies int(cl(f(A))) \subseteq f(A). (iii) \Rightarrow (i): Let A be an IFCS in X. Then its complement A^c is an IFOS in X. By hypothesis, int(cl(f(A^c))) \subseteq f(A^c). Hence f(A^c) is an IFSCS in Y. Since every IFSCS is an IF π GSCS, f(A^c) is an IF π GSCS in X. Therefore f(A) is an IF π GSOS in X. Hence f is an IFC π GSOM.

Theorem 3.16: Every IFCM π GSOM is an IFC π GSOM but not conversely.

Proof: Let f: X \rightarrow Y be an IFCM π GSOM. Let A \subseteq X be an IFOS. Then A is an IF π GSOS in X. By hypothesis, f(A) is an IF π GSCS in Y. Hence f is an IFC π GSOM.

Example 3.17: Let $X = \{a, b\}$, $Y = \{u, v\}$ and $G_1 = \langle x, (0_a, 0.3_b), (0.5_a, 0.4_b) \rangle$, $G_2 = \langle y, (0.2_u, 0.4_v), (0.5_u, 0.4_v) \rangle$, $G_3 = \langle y, (0.1_u, 0.3_v), (0.5_u, 0.4_v) \rangle$, $G_4 = \langle y, (0.1_u, 0.3_v), (0.5_u, 0.4_v) \rangle$, $G_5 = \langle y, (0.2_u, 0.4_v), (0.3_u, 0.4_v) \rangle$ and $G_6 = \langle y, (0.4_u, 0.4_v), (0.3_u, 0.4_v) \rangle$. Then $\tau = \{0_{-}, G_1, 1_{-}\}$ and $\sigma = \{0_{-}, G_2, G_3, G_4, G_5, G_6, 1_{-}\}$ are IFTs on X and Y respectively. Define a mapping f: $(X, \tau) \rightarrow (Y, \sigma)$ by f(a) = u and f(b) = v. Then f is an IFC π GSOM but not an IFCM π GSOM, since A = $\langle x, (0_a, 0.3_b), (0.5_a, 0.4_b) \rangle$ is an IF π GSOS in X but f(A) = $\langle y, (0_u, 0.3_v), (0.5_u, 0.4_v) \rangle$ is not an IF π GSCS in Y.

Theorem 3.18: (i) If f: $X \rightarrow Y$ is an IFOM and g: $Y \rightarrow Z$ be an IFC π GSOM, then g o f is an IFC π GSOM.

(ii) If f: $X \rightarrow Y$ is an IFC π GSOM and g: $Y \rightarrow Z$ is an IFM π GSCM, then g o f is an IFC π GSOM.

(iii) If f: $X \rightarrow Y$ is an IF π GSOM and g: $Y \rightarrow Z$ is an IFCM π GSOM, then g o f is an IFC π GSOM.

(iv) If f: $X \rightarrow Y$ is an IFC π GSOM and g: $Y \rightarrow Z$ is an IFCM π GSOM, then g o f : $X \rightarrow Z$ is an IF π GSOM.

Proof: (i) Let A be an IFOS in X. Then f(A) is an IFOS in Y. Therefore g(f(A)) is an IF π GSCS in Z. Hence g o f is an IFC π GSOM.

(ii) Let A be an IFOS in X. Then f(A) is an IF π GSCS in Y. Therefore g(f(A)) is an IF π GSCS in Z. Hence g o f is an IFC π GSOM (iii) Let A be an IFOS in X. Then f(A) is an IF π GSOS in Y. Therefore g(f(A)) is an IF π GSCS in Z. Hence g o f is an IFC π GSOM.

(iv) Let A be an IFOS in X. Then f(A) is an IF π GSCS in Y, since f is an IFC π GSOM. Since g is an IFCM π GSOM, g(f(A)) is an IF π GSOS in Z. Therefore g o f is an IF π GSOM.

Theorem 3.19: If f: X \rightarrow Y is an IFCM π GSOM, then for any IF π GSCS A in X and for any IFP $c(\alpha, \beta) \in Y$, if $f^{-1}(c(\alpha, \beta)) \circ A$, then $c(\alpha, \beta) \circ \pi$ gsint(f(A)).

Proof: Let $A \subseteq X$ be an IF π GSPCS and let $c(\alpha, \beta) \in Y$. Let $f^{-1}(c(\alpha, \beta))_q A$. Then $c(\alpha, \beta)_q f(A)$. By hypothesis, f(A) is an IF π GSOS in Y. This implies π gsint(f(A)) = f(A). Hence $c(\alpha, \beta)_q \pi$ gsint(f(A)).

Theorem 3.20: If $f: (X, \tau) \to (Y, \sigma)$ is an IFC π GS closed mapping and Y is an IF $\pi_b T_{1/2}$ space, then f(A) is an IFGOS in Y for every IFCS A in X.

Proof: Let $f: (X, \tau) \rightarrow (Y, \sigma)$ be an IFC π GS closed mapping and let A be an IFCS in X. Then by hypothesis f(A) is an IF π GSOS in Y. Since Y is an IF π_b T_{1/2} space, f(A) is an IFGOS in Y.

REFERENCES

- [1] K.Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20 (1986), 87-96.
- [2] D.Coker, An introduction to intuitionistic fuzzy topological spaces, Fuzzy sets and systems, 88(1997), 81-89.
- [3] Joung Kon Jeon, Young Bae Jun, and Jin Han Park, Intuitionistic fuzzy alpha continuity and intuitionistic fuzzy pre continuity, Int. J. Math. Math. Sci., 19 (2005), 3091-3101.
- [4] S.Maragathavalli and K.Ramesh , Intuitionistic fuzzy π generalized semi closed sets, Adv. Theor. Appl. Math., 1 (2012), 33-42.

- [5] S.Maragathavalli and K.Ramesh , π- generalized semi closed mappings in intuitionistic fuzzy Topological spaces, J. Adv. Stud. Topol., Vol.3, No.4, (2012) ,111-118.
- [6] S.Maragathavalli and K.Ramesh, A note on intuitionistic fuzzy π generalized semi irresolute mappings, international journal of mathematical Archive, Vol.3, No.3, (2012),1-7.
- [7] S.Maragathavalli and K.Ramesh , Intuitionistic fuzzy completely π generalized semi continuous mappings in topological spaces, Int.J.Cotemp.Math. Sciences, Vol.8, No.1, (2013),1-13.
- [8] S.Maragathavalli and K.Ramesh , Intuitionistic fuzzy almost π generalized semi open mappings in topological spaces, Gen.Math.Notes, 2(2012),47-59.
- [9] S.Maragathavalli and K.Ramesh , On almost π generalized semi continuous mappings in intuitionistic fuzzy topological spaces, Mathematical Theory and Modeling, Vol.2, No.4, (2012),18-28.
- [10] Shanthi.R and Sakthivel.K, Intuitionistic fuzzy Generalized Semi Continuous Mappings, Adv. Theor. Appl. Math., 5(2009). 73-82.
- [11] R.Shanthi and D.Jayanthi, Intuitionistic fuzzy generalized semi Pre Continuous mappings, Int.J.Cotemp.Math. Sciences . Vol.5, No.30, (2010),1455-1469.
- [12] K.Sakthivel, Intuitionistic fuzzy alpha generalized continuous mappings and Intuitionistic alpha generalized irresolute mappings, Int.J.Cotemp.Math. Sciences . Vol.4, No.37, (2010),1831-1842.
- [13] S.S.Thakur, and Rekha Chaturvedi, Regular generalized closed sets in intuitionistic fuzzy topological spaces, Universitatea Din Bacau Studii Si Cercetari Stiintifice, 6 (2006), 257-272.
- [14] Young Bae Jun and Seok- Zun Song, Intuitionistic fuzzy semi-pre open sets and Intuitionistic semi-pre continuos mappings, jour. of Appl. Math and comput., 19(2005), 467-474.
- [15] L.A.Zadeh, Fuzzy sets, Inform. Control, 8 (1965), 338-353.