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1. INTRODUCTION 

Asymmetric metric spaces are defined as metric spaces, but without the requirement that the (asymmetric) metric d has to satisfy 

d(x, y) = d(y, x).There are many applications of asymmetric metrics both in pure and applied mathematics; for example, 

asymmetric metric spaces have recently been studied with questions of existence and uniqueness of Hamilton–Jacobi equations 

[1] in mind. 

The study of asymmetric metrics apparently goes back to Wilson [2]. Following his terminology, asymmetric metrics are often 

called quasi-metrics. Author in [3] has discussed on asymmetric metric spaces. Also, Aminpour, Khorshidvandpour and Mousavi 

[4] have proved interesting theorems. 

In this paper, we prove some theorems in asymmetric metric spaces. We start with some definitions from [3].Also we extend some 

results in [5]. 

Definition 1.1. A function d  : X × X→ℝ is an asymmetric metric and (X, d)  is an asymmetric metric space if: 

(1) For every x, y ∈ X, d(x, y) ≥ 0 and d(x, y) = 0 holds if and only if x = y, 

(2) For every x, y, z ∈ X, we have d(x, z) ≤ d(x, y) + d(y, z). 

Henceforth, (X, d) shall be an asymmetric metric space. 

 

Example1.2. Consider   d : ℝ ×ℝ →  defined by 

 

d(x, y) =  

Then d is an asymmetric metric on ℝ. 

Definition1.3. The   forward topology τ+ induced by d is the topology generated by the forward open balls  

  

y ∈ X: d(x, y)<ε}    for x ∈ X, ε > 0. 
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Likewise, the backward topology τ− induced by d is the topology generated by the backward open balls 

y ∈ X: d(y, x)<ε}    for x ∈ X, ε > 0. 

 

Definition 1.4. A sequence forward converges to ∈ X, respectively backward converges to ∈ X   if and only if  

 

 Respectively    

 

Then we write  respectively.  

 

Example1.5. Let (ℝ, d) be an asymmetric space, where d  is as in example1.2. It is easy to show that   the sequence 

1  ∈ℕ(x∈ ) is both forward and backward converges to x. 

Definition 1.6 Suppose (X, ) and (Y  , ) are asymmetric metric spaces.  Let f : X → Y  be a function . We say f   is forward 

continuous at x  , respectively backward continuous, if, for every ε > 0, there exists δ > 0 such that y∈  implies f (y) ∈

, respectively f (y) ∈ . 

However, note that uniform forward continuity and uniform backward continuity are the same. 

 

Lemma1.8. Let d : X × X→  be an asymmetric metric. If (X, d) is forward sequentially compact and  then  

 

Notation1.9.We introduce some further notations. denotes the space of functions from X to Y. The uniform metric on  is 

 (f, g) := sup{ )):x }, 

where (x, y) := min{d(x, y), 1} and d is the asymmetric metric associated with Y. 

 

 

2.MAIN  RESULTS 

Theorem 2.1. Let  be  an  asymmetric  metric  space . Then    if  only  if  each  subsequence  of  it  be  forward  

convergent  to   . 

Proof. Let  .Given  , there  exists   such  that    for  all   . Suppose that  be an 

arbitrary subsequence of   . If  we  have  , i . e ,  .Conversely .since   is  a  subsequence  of  

itself ,so . □                                                           

Remark 2.2. One  can  rewrite  the  previous  theorem  for  back  limits . 

Theorem2.3. Let be  an  asymmetric  metric  space . If is  backward  sequentially  compact  and   , then   .  

Proof. Let   .Since  is  backward  sequentially  compact  so  by  theorem 2.1  each  subsequence  of    , namely  

  , is  backward  convergent  to  .On  the  other  hand ,  , has  a  subsequence  which  backward  convergent , say  

. So   .Now  by  [1,lemma 3.1] , we  deduce  that   . We show that  . Let   .Then there 

exists a    a subsequence   of   so that    for each   . Also ,  , itself , has  a  

subsequence  which is  backward  convergent  to  , say   hence  we  can  find     such  that    for  

  which  is  a  contradiction .So  .                                                                                                                                       □ 

Lemma 2.4.If  backward  convergence  implies  the  forward  convergence  of  a  sequence , then  the  backward  limit  is  unique . 
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Proof. Let  implies . Also , suppose  that . Given  , there  exists so  that    for all  

 . On  the  other  hand , there  exists   such  that    for  all   by  lemma [1,lemma 3.1] , we  

deduce  that   . Set  then  we  have 

 

Since  was  arbitrary , so  .                                                                                                              □ 

Remark 2.5.Auther  in  [1]  has  proved  a  similar  lemma  by  replacing  forward  by backward . 

Theorem 2.6.Let    be  a  backward  totally  bounded  asymmetric  metric  space which  the  backward  convergence  of  a  

sequence  implies  the  forward  convergence . Then is sequentially  compact . 

Proof. Suppose that   be an arbitrary sequence in  . Given   ,there  exist in    such  that  

 

Also , we  can  find    and    so  that    for  all   . Hence   .It is easy to show that,   

is  unique. Now, by assumption we have 

 

 Since  is  a  subsequence  of  itself , then    is  forward and backward sequentially  compact, as desired□ 

Note2.7. I has introduced the concept of denseness in [6]. In the case that  is both of forward and backward compact and it has a 

forward and backward dense subset, then all of results in the work come back to metric space. 
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