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Abstract: The Wiener index is one of the oldest graph parameter which is used to study molecular-graph-based structure. This 

parameter was first proposed by Harold Wiener in 1947 to determining the boiling point of paraffin. The Wiener index of a 

molecular graph measures the compactness of the underlying molecule. This parameter is wide studied area for molecular 

chemistry. It is used to study the physio-chemical properties of the underlying organic compounds. The Wiener index of a 

connected graph is denoted by  
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that is ( )W G  is the sum of distances between all pairs (ordered) of vertices of G .In this paper we will find the Hyper Wiener 

index which is defined as ,   
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  INTRODUCTION  
 All graphs considered in this paper are simple and connected. One of the oldest and well-studied distance based graph 

invariants associated with a connected graph G  is the  Wiener number ( )W G , also termed as  Wiener index in 

chemical or mathematical chemistry literature, which is defined [8] as the sum of distance over all unordered vertex 

pairs in G , namely,  
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 For more results on wiener index one may be referred to those in Dobrynin and Kochetova [9] and its references. 

Dobrynin and Kochetova [9] and Gutman [12] independently proposed a vertex degree-weighted version of the Wiener 

index called the degree distance or the Schultz molecular topological index, which is defined for a connected graph G  

as  
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where ( )Gd u  is the degree of the vertex u  in .G  Note that the degree distance is a degree-weight version of the 

Wiener index. Many results on the degree distance DD(G) have been put forward in past decades, and they mainly deal 

with extreme properties of ( )DD G . Tomescu [4] showed that the star is the unique graph with minimum degree 

distance within the class on n -vertex connected graphs. Tomescu [4] deduced properties of graphs with minimum 

degree distance in the class of n -vertex connected graphs with 1m n  edges. 
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The hyper-Wiener index of acyclic graphs was introduced by Milan Randic in 1993. Then Klein et al. [6], generalized 

Randics  definition for all connected graphs, as a generalization of the Wiener index. It is defined as  
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We encourage the reader to consult [10]-[16] for the mathematical properties of hyper-Wiener index and its 
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applications in chemistry. 

For example in the Fig. 1, gives the picture of a molecule structure of benzyl and the corresponding molecular graph.  

 

 
 

Fig. 1 

 

Theorem 1.1. Let G  be a connected graph with size n  and m  .Then 
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Proof. Suppose G  be a graph of order n  and size m  with diameter ( ) 2G  . Define the sets = | ( ) =1A u V e u  

and = | ( ) = 2.B u V e u  Then, | | | |= .A B n  If ,u A  then ( , ) = 1Gd u v n  and if ,u B  then define two 

sets 1B  and 2B  as 1 = | ( , ) =1B v V d u v  and 2 = | ( , ) = 2B v V d u v . 

Then  

            1 2 1 2 2( , ) =| | 2 | |=| | | | | |Gd u v B B B B B     

 since 1 2| | | |= 1,B B n   

thus  

 

1

1

( , ) = 1 ( 1 | |)

= 2 2 | |

= 2 2 ( ).

G

G

d u v n n B

n B

n d u

   

 

 

  

 Therefore,

 

,

1
( ) = ( , ).

2

1 1
= ( , ) ( , )

2 2

1
= ( 1) | | (2 2 ( )) | |

2

1
= ( 1) | | (2 2) | | ( )

2

1
= ( 1)(| | | |) ( 1) | | ( )

2

1
= ( 1) ( 1)( | |) ( )

2

G

u v V
G

G G

u A u B

G

G

u B

G

u B

G

u B

W G d u v

d u v d u v

n A n d u B

n A n B d u

n A B n B d u

n n n n A d u



 







 
 

 

   

 
    

 

 
     

 

 
     

 



 







  (

2

1
= ( 1) ( 1) ( 1) | | ( )

2

1
= 2 ( 1) ( ) ( )

2

1 1
= 2 ( 1) ( ) = 2 ( 1) 2         ) = 2

2 2

=

G

u B

G G

u A u B

G

u V u V

n n n n n A d u

n n d u d u

n n d u n n m Since d u m

n n m



 

 

 
      

 

 
   

 

 
    

 

 



 

 

  

 Now for finding Hyper Wiener index we have;  
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