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Abstract: In this paper, I solved the problems occurred in first order ordinary linear differential equations based on Newton‟s Law 

of cooling by using Laplace Transform. 
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I. INTRODUCTION 

 

The theory of Laplace Transform is an important part of the mathematical surroundings required by 

engineers, physicists and mathematicians. It gives an easy and successful means for solving certain types of 

differential and integral equations. 

The Laplace transform reduces the problem of solving differential equations to an algebraic problem. It is 

particularly useful for solving problems where the mechanical or electrical driving force has discontinuities,  

An integral transform called the Laplace transform defined for function of exponential order, we consider in 

the set A defined by 
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integral transformation and is defined by  

                             1_________)()]([)(
0




 dttfetfLsf st  

The satisfactory condition for the survival of the Laplace transform are that f(t) for 0t  be piecewise 

continuous and of the exponential order otherwise Laplace transform may (or) may not exist. 

The unique function     sfLtf 1  is called inverse Laplace transform of    2_____sf  

 

II. Laplace Transform of standard functions and properties 
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           Equating real and imaginary parts we get 
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Similarly, we can show that 
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Linearity Property: 

Let f1(t) and f2(t) be two functions defined on [0,∞) such that the Laplace transforms L[f1(t)] and L[f2(t)] 

exists. If k1 and k2 are two constants, then  
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This property is valid since 
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This result can be extended to the linear combinations of more than two functions 

Laplace transforms Derivatives: 

Theorem: If f(t) is continuous 0t and of exponential order, say   and has a derivative f(t) which is 

piecewise continuous on every finite interval [0,N] for each N>0, then the Laplace Transform of the 
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derivative f(t) exists for s>  and  
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Since f(t) is of an exponential order, the integrand in first integral on the R.H.S. is zero at the upper limit 

when s>  and if f(0) at the lower limit. Thus, we have 
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III. NEWTON’S LAW OF COOLING 

 

Newton‟s law of cooling states that the rate of change of temperature of a body is directly proportional to 

difference of the body temperature and its surrounding temperature.  

 Let   be the temperature of body at any time t, 0  be its surrounding temperature. Then by 

Newton‟s law of cooling  
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IV. APPLICATION OF LAPLACE TRANSFORM ON NEWTON’S LAW COOLING. 

 

Example-1: The temperature of the body drops from 100
0
c to 80

0
c in 20 minutes when the surrounding 

temperature is at 20
0
c. Then what will be the temperature after 30 minutes and when will be the temperature 

45
0
c. 

Solution. Given that, the surrounding temperature c0

0 20  

         Initial temperature at t=0, c0100)0(   and at t=20 minutes, c080)20(   

          From Newton‟s Law of cooling, we have 
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From Laplace Transform of derivatives  
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From (2) we get, 
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We have at t=20 minutes, c080)20(  , from (3)    
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Now at t=30 minutes, from (5) 
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Applying logarithm, we get 
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Example-2. (Estimation of time of murder) 

The body of murder victim was discovered at 12:00PM the doctor took the temperature of body at 

12:30Pm which was 94
0
F. He took again temperature after one hour when it showed 93

0
F, and noticed 

that the temperature of the room was 60
0
F. Estimation the time of death (Normal temperature of 

human body=98.6
0
F) 

Solution. Given that, Room temperature F0

0 60  

The initial temperature of body is 94 F0  

             i.e., at t=0(12:30Pm), F094)0(   

From Newton‟s law of cooling 
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From Linear property                  
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From Laplace Transform of derivatives  
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From(2),we get 
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Now at time t=60minutes (1:30Pm), Ft 093)(  , from (7) 
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But the human body temperature before the death is 98.6
0
F, from (7) 
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Applying logarithm on both sides 
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therefore the estimated death time is 12:30-4:25=8:05 AM 

Example-3.A cake is removed from an oven its temperature is measured at 300
0
F, 3minutes later its 

temperature is 200
0
F. How long it will take to cool off a room temperature is70

0
F. 

Solution. Given, room temperature F0
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Taking Laplace transform on both sides 
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From Laplace Transform of derivatives  
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Taking inverse Laplace Transform we get 
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Given at t=3minutes, F0200)3(  , from(11) 
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However the equation (11) given 

No finite solution to Ft 070)(   
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We expect the cake will approaches to room temperature, which is given in the tabular form 

 

Fint 0)(  Time(min) 

75 20.1 

74 21.3 

73 22.8 

72 24.9 

71 28.6 

70.5 32.3 

 

From above we can conclude that the cake will approximately be at room temperature in 30 minutes 

 

V. CONCLUSION 

We can apply Laplace transform to solve the problems related to Newton‟s Law of cooling. 
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