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Abstract

In this paper, we consider a class of second-order neutral evolution equations with non-
local conditions in Banach spaces. This paper deals with the approximate controllability
for a class of second-order control systems. A set of sufficient conditions are established for
the approximate controllability of a class of second-order neutral evolution equations with
nonlocal conditions in Banach spaces and Schauder’s fixed point theorem is used to prove
the main result. An example is also given to illustrate the main result.

2010 Mathematics Subject Classification: 26A33, 34B10, 34K09, 47H10, 93B05.
Keywords: Approximate controllability, Second order evolution equations, Cosine function of
operators, Impulsive systems, Nonlocal conditions.

1 Introduction

The concept of Controllability gains more attention in the past decade because of its various
applications in the field of applied mathematics. Controllability generally means that with the
help of set of admissible controls, it is possible to steer a dynamical control system from an
arbitrary initial state to an arbitrary final state. Controllability can be distinguished as exact
and approximate controllability. Exact controllability enables to steer the system to arbitrary
final state while approximate controllability means that the system can be studied to an arbitrary
small neighbourhood of final state, i.e., it gives the possibility of steering the system to state
which forms the dense subspace in the state space. When compared with the exact one, the
approximate controllaility is completely adequate in applications. Hence, it is necessary to
concentrate more on this type of problems. For basic concepts about the controllability, reader
may refer [1, 2, 5, 7, 8, 12, 16, 24–27, 32, 39, 41].

The second order differential equations play a vital role in constructing the various mathe-
matical and physical model problems. There exists an extensive literature studies regarding the
abstract second order problems. The concept of cosine family of functions is used to find the
existence of solutions to the second order abstract cauchy problems in the case of autonomous
problems. For basic concepts about the cosine function theory, we refer the reader to [14, 34–
36, 40]. The existence of non-autonomous second order abstract cauchy problem corresponding
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to the family {A(t); t ∈ I} is directly related to the concept of evolution operator generated
by the family. The existence of second order evolution equations have been studied in various
papers [4, 13, 17, 18, 21, 28, 33]. Since the introduction of the concept of nonlocal condition by
Byszewski, nonlocal cauchy problems have been used in many mathematical models than the
classical ones because of its better real world applications. Several authors studied the existence
and controllability of differential equations with nonlocal conditions [4, 10, 11, 27].

Recently, in [25] Mahmudov et.al. studied the approximate controllability of second or-
der evolution differential inclusions in Banach spaces by using Bohnenblust Karlin Fixed point
theorem. In [4] Balachandran et al. discussed the nonlocal cauchy problem for second order
integro-differential evolution equations in Banach spaces. In [15] Hernandez discussed the ex-
istence of solutions to a second order partial differential equation with nonlocal conditions. In
[32], Sakthivel et al. studied the approximate controllability of second-order systems with state-
dependent delay by using Schauder’s fixed point theorem. Upto the authors knowkledge, there
is no work reported on the approximate controllability of second-order evolution equation with
nonlocal condition of the form (1.1)-(1.2). This is the main motivation of doing this work.

Inspired by the above works, in this paper, we establish sufficient conditions for the ap-
proximate controllability for a class of second-order neutral evolution differential equations with
nonlocal conditions in Banach spaces of the form

d

dt
[x′(t)− g

(
t, x(t), x′(t)

)
] =A(t)x(t) + f

(
t, x(t), x′(t)

)
+Bu(t), t ∈ I = [0, b], (1.1)

x(0) =x0 + p(x, x′), x′(0) = y0 + q(x, x′), (1.2)

In this equation, A(t) : D(A(t)) ⊆ X → X is a closed linear operator on a Banach space X with
norm ‖ · ‖. Here U is a Banach space and B is a bounded linear operator from U to X and the
functions. Also, f, g : I ×X ×X → X, p, q : C × C → X are the appropriate functions defined
later.

We organize this paper as follows. In section 2, we give some necessary concepts and impor-
tant definitions about the sine and cosine operator theory and evolution equations. In section
3, we establish the set of sufficient conditions for the approximate controllability for a class of
second-order evolution differential equations with nonlocal conditions in Banach spaces. In sec-
tion 4, we establish the set of sufficient conditions for the approximate controllability for a class
of second-order evolution impulsive differential equations with nonlocal conditions in Banach
spaces. An example is given 5 to illustrate the theory of the above found result.

2 Preliminaries

In this section, we mention a few results, notations and lemmas needed to establish our main
results. We introduce certain notations which will be used throughout the article without any
further mention. Let (X, ‖·‖X) and (Y, ‖·‖Y ) be Banach spaces, and L(Y,X) be the Banach space
of bounded linear operators from Y into X equipped with its natural topology; in particular, we
use the notation L(X) when Y = X. By ρ(A), we denote the resolvent set of a linear operator
A. Throughout this paper, Br(x,X) will denote the closed ball with center at x and radius
r > 0 in a Banach space X. We denote by C, the Banach space C(J,X) endowed with supnorm
given by ‖x‖C ≡ supt∈I ‖x(t)‖, for x ∈ C.

Now, we consider the abstract non-autonomous second order initial value problem

x′′(t) =A(t)x(t) + f(t), 0 ≤ s, t ≤ b, (2.1)

x(s) =x0, x′(s) = y0, (2.2)
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where A(t) : D(A(t)) ⊆ X → X, t ∈ I = [0, b] is a closed densely defined operator and f : I → X
is an appropriate function. For detailed concepts about the evolution operator, the reader may
refer [13, 21, 28, 29] and the references within. In the above mentioned works, the existence of
solutions to the problem (2.1)− (2.2) is related to the existence of an evolution operator S(t, s)
for the homogeneous equation

x′′(t) =A(t)x(t), 0 ≤ s, t ≤ b. (2.3)

Here we assume that the domain of A(t) is a subspace D dense in X and independent of t, and
for each x ∈ D the function t 7→ A(t)x is continuous. We will use the concept of evolution
operator discussed by Kozak [19].

Definition 2.1. A family S of bounded linear operators S(t, s) : I × I → L(X) is called an
evolution operator for (2.3) if the following conditions are satisfied:

(Z1) For each x ∈ X, the mapping [0, b]× [0, b] 3 (t, s)→ S(t, s)x ∈ X is of class C1 and

(i) for each t ∈ [0, b], S(t, t) = 0,

(ii) for all t, s ∈ [0, b], and for each x ∈ X,

∂

∂t
S(t, s)x

∣∣∣∣
t=s

= x,
∂

∂t
S(t, s)x

∣∣∣∣
t=s

= −x.

(Z2) For all t, s ∈ [0, b], if x ∈ D(A), then S(t, s)x ∈ D(A), the mapping [0, b]× [0, b] 3 (t, s)→
S(t, s)x ∈ X is of class C2 and

(i) ∂2

∂t2
S(t, x)x = A(t)S(t, s)x,

(ii) ∂2

∂s2
S(t, x)x = S(t, s)A(s)x,

(iii) ∂
∂s

∂
∂tS(t, x)x

∣∣∣∣
t=s

= 0.

(Z3) For all t, s ∈ [0, b], if x ∈ D(A), then ∂
∂sS(t, s)x ∈ D(A), then ∂2

∂t2
∂
∂sS(t, s)x, ∂2

∂s2
∂
∂tS(t, s)x

and

(i) ∂2

∂t2
∂
∂sS(t, s)x = A(t) ∂∂sS(t, s)x,

(ii) ∂2

∂s2
∂
∂tS(t, s)x = ∂

∂tS(t, s)A(s)x,

and the mapping [0, b]× [0, b] 3 (t, s)→ A(t) ∂∂sS(t, s)x is continuous.

In the following work, we assume that there exists an evolution operator S(t, s) associated
to the operator A(t). The following assumptions are made with the help of [4]. There exists a
positive constants M,M∗ and N,N∗ such that

N = sup{‖S(t, s)‖ : t, s ∈ I}, M = sup{‖C(t, 0) : t ∈ I},

and N∗ = sup

{
‖ ∂
∂t
S(t, s)‖ : t, s ∈ I

}
, M∗ = sup

{
‖ ∂
∂t
C(t, 0))‖ : t ∈ I

}
respectively. Further, for x ∈ X and t1, t2, s ∈ I,[ ∂

∂t1
C(t1, 0)− ∂

∂t2
C(t2, 0)

]
x→ 0,

[ ∂
∂t1

S(t1, s)−
∂

∂t2
S(t2, s)

]
x→ 0, as t1 → t2.
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Given that f : I → X is an integrable function, the mild solution x : [0, b]→ X of the problem
(2.1)− (2.2) is given by

x(t) = C(t, s)x0 + S(t, s)y0 +

∫ t

0
S(t, τ)f(τ)dτ.

In the literature several techniques have been discussed to establish the existence of the evolution
operator S(·, ·). In particular, a very studied situation is that A(t) is the perturbation of an
operator A that generates a cosine operator function and so we give some important properties
of the theory of cosine functions. Let A : D(A) ⊆ X → X be the infinitesimal generator of
a strongly continuous cosine family of bounded linear operators (C(t))t∈R on Banach space X.
We denote by (S(t))t∈R the sine function associated with (C(t))t∈R which is defined by

S(t)x =

∫ t

0
C(s)xds, x ∈ X, t ∈ R.

We refer the reader to [14, 34, 35] for the necessary concepts about cosine functions. It follows
that

C(t)x− x = A

∫ t

0
S(s)xds,

for all X. The notation [D(A)] stands for the domain of the operator A endowed with the graph
norm ‖x‖A = ‖x‖ + ‖Ax‖, x ∈ D(A). Moreover, in this paper the notation E stands for the
space formed by the vectors x ∈ X for which the function C(·)x is a class C1 on R. It was
proved by Kisyński [18] that the space E endowed with the norm

‖x‖E = ‖x‖+ sup
0≤t≤1

‖AS(t, 0)x‖, x ∈ E,

is a Banach space. The operator valued function

G(t) =

[
C(t) S(t)
AS(t) C(t)

]
is a strongly continuous group of linear operators on the space E×X generated by the operator

A =

[
0 I
A 0

]
defined on D(A)×E. It follows from this that AS(t) : E → X is a bounded linear

operator such that AS(t)x → 0 as t → 0, for each x ∈ E. Furthermore, if x : [0,∞) → X is a
locally integrable function, then z(t) =

∫ t
0 S(t, s)x(s)ds defines an E-valued continuous function.

We define the operator S(t, s)y0 = x(t, s). It follows from the previous estimate that S(t, s)
is a bounded linear map on E. Since E is dense in X, we can extend S(t, s) to X. We keep the
notation S(t, s) for this extension. We know that other than dim(X) <∞, the cosine function
C(t) cannot be compact for all t ∈ R. By contrast, for the cosine functions that arise in specific
applications, the sine function S(t) is very often a compact operator for all t ∈ R.

Theorem 2.2. [17, Theorem 1.2]. If S(t) is compact for all t ∈ R, then S(t, s) is also compact
for all s ≤ t.

Definition 2.3. A function x ∈ [0, b]→ X is said to be a mild solution of the system (1.1)-(1.2)
if x(t) ∈ D(A(t)), for each t ∈ I and satisfies the following integral equation

x(t) =C(t, 0)[x0 + p(x, x′)] + S(t, 0)[y0 + q(x, x′)− g(0, x(0), x′(0))]

+

∫ t

0
C(t, s)g(s, x(s), x′(s))ds+

∫ t

0
S(t, s)f(s, x(s), x′(s))ds+

∫ t

0
S(t, s)Bu(s)ds, t ∈ I.
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In order to address the problem, it is convenient at this point to introduce two relevant
operators and basic assumptions on these operators:

Γb0 =

∫ b

0
S(b, s)BB∗S∗(b, s)ds : X → X,

R(α,Γb0) = (αI + Γb0)
−1 : X → X,

where B∗ denotes the adjoint of B and S∗(t) is the adjoint of S(t). It is straightforward that
the operator Γb0 is a linear bounded operator.

To investigate the approximate controllability of the system (1.1)-(1.2), we impose the fol-
lowing condition:

(H0) αR(α,Γb0)→ 0 as α→ 0+ in the strong operator topology.

In view of [23], Hypothesis (H0) holds if and only if the linear system

x′′(t) =A(t)x(t) + (Bu)(t), t ∈ [0, b], (2.4)

x(0) =x0, x′(0) = y0, (2.5)

is approximately controllable on [0, b].

Lemma 2.4 (Schauder’s Fixed point theorem ). If K is a closed, bounded and convex subset of
a Banach space X and F : K → K is completely continuous, then F has a fixed point in K.

3 Approximate controllability results

In this section, first we establish a set of sufficient conditions for the approximate controllability
for a class of second order neutral evolution differential equations with nonlocal conditions of the
form (1.1)-(1.2) in Banach spaces by using Schauder’s fixed point theorem. In order to establish
the result, we need the following hypotheses:

(H1) S(t), t > 0 is compact.

(H2) The function f : I ×X ×X → X satisfies the following conditions:

(i) The function f(t, ·, ·) : X ×X → X is continuous a.e. t ∈ I.

(ii) The function f(t, ·, ·) : I → X is strongly measurable for each (x, y) ∈ X ×X.

(ii) For every r > 0, there exists a function λr ∈ L′(I,R+) such that

sup
‖x‖,‖y‖≤r

‖f(t, x, y)‖ ≤λr(t), for a.e. t ∈ I,

and lim inf
r→∞

∫ b

0

λr(t)

r
dt =δ <∞.

where δ > 0 is a constant.

(H3) The function f : I ×X ×X → X is continuous and uniformly bounded and there exists
Lf > 0 such that ‖f(t, x, y)‖ ≤ Lf for all (t, x, y) ∈ I ×X ×X.

(H4) The function g : I ×X ×X → X satisfies the following conditions:
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(i) For each t ∈ I, the function g(t, ·, ·) : I × X × X → X is continuous and for each
x ∈ X, the function g(·, x, y) : I ×X ×X → X is strongly measurable.

(ii) There exists a constants Lg, L
∗
g such that

‖g(t, x1, y1)− g(t, x2, y2)‖ ≤Lg[‖x1 − x2‖+ ‖y1 − y2‖] xi, yi ∈ X, i = 1, 2, and

‖g(t, x1, y1)‖ ≤Lg[‖x1 + y1‖] + L∗g

where L∗g = maxt∈I ‖g(t, 0, 0)‖

(H5) The functions p, q : C(I;X)×C(I;X)→ X are continuous and there exist positive constants
Lp, Lq such that

‖p(x1, y1)− p(x2, y2)‖ ≤ Lp(‖x1 − x2‖+ ‖y1 − y2‖),
‖q(x1, y1)− q(x2, y2)‖ ≤ Lq(‖x1 − x2‖+ ‖y1 − y2‖),

for every x1, x2, y1, y2 ∈ C(I;X).

It will be shown that the system (1.1)-(1.2) is approximately controllable, if for all α > 0,
there exists a continuous function x(·) such that

x(t) =C(t, 0)[x0 + p(x, x′)] + S(t, 0)[y0 + q(x, x′)− g(0, x(0), x′(0))]

+

∫ t

0
C(t, s)g(s, x(s), x′(s))ds+

∫ t

0
S(t, s)f(s, x(s), x′(s))ds+

∫ t

0
S(t, s)Bu(s, x)ds

x′(t) =
∂

∂t
C(t, 0)[x0 + p(x, x′)] +

∂

∂t
S(t, 0)[y0 + q(x, x′)− g(0, x(0), x′(0))] + g(t, x(t), x′(t))

+

∫ t

0

∂

∂t
C(t, s)g(s, x(s), x′(s))ds+

∫ t

0

∂

∂t
S(t, s)f(s, x(s), x′(s))ds

+

∫ t

0

∂

∂t
S(t, s)Bu(s, x)ds

u(t, x) =B∗S∗(b, t)R(α,Γb0)p(x(·))

where

p(x(·)) =xb − C(b, 0)[x0 + p(x, x′)]− S(b, 0)[y0 + q(x, x′)− g(0, x(0), x′(0))]

−
∫ b

0
C(b, s)g(s, x(s), x′(s))ds−

∫ b

0
S(b, s)f(s, x(s), x′(s))ds.

Theorem 3.1. Suppose that the hypotheses (H0)-(H6) are satisfied. Assume also

(M +M∗)[Lp + bLg] + (N +N∗)[Lq + Lg + δ]+
1

α
NM2

Bb(N +N∗)[M(Lp + bLg)

+N(Lq + Lg + δ)] < 1. (3.1)

where MB = ‖B‖. Then system (1.1)-(1.2) has a solution on I.

Proof. We consider the space Z = C(I,X) × C(I,X) be the space endowed with the norm
of uniform convergence ‖(u, v)‖b = ‖u‖b + ‖v‖b. On the space Z, we consider a set Q as
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Q = {x ∈ Z;x(0) = x0 + p(x, x′), ‖x‖ ≤ r} where r is a positive constant. We define the operator
Υ : Z → Z by

Υ(x, x′) = (Υ1(x, x
′),Υ2(x, x

′))

where

Υ1(x, x
′) =C(t, 0)[x0 + p(x, x′)] + S(t, 0)[y0 + q(x, x′)− g(0, x(0), x′(0))]

+

∫ t

0
C(t, s)g(s, x(s), x′(s))ds+

∫ t

0
S(t, s)f(s, x(s), x′(s))ds+

∫ t

0
S(t, s)Bu(s, x)ds,

Υ2(x, x
′) =

∂

∂t
C(t, 0)[x0 + p(x, x′)] +

∂

∂t
S(t, 0)[y0 + q(x, x′)− g(0, x(0), x′(0))] + g(t, x(t), x′(t))

+

∫ t

0

∂

∂t
C(t, s)g(s, x(s), x′(s))ds+

∫ t

0

∂

∂t
S(t, s)f(s, x(s), x′(s))ds

+

∫ t

0

∂

∂t
S(t, s)Bu(s, x)ds.

It will be shown that the operator Υ has a fixed point by using the following steps.

Step 1: For each positive number r > 0, such that Υ(Q) ⊆ Q. If this is not true, then for each
positive number r, there exists a function (xr(·), x′r(·)) ∈ Q and tr ∈ I, but Υ(xr, x

′
r) does not

belong to Q, i.e.,

r <‖Υ(xr, x
′
r)(tr)‖

≤‖Υ1(xr, x
′
r)(tr)‖+ ‖Υ2(xr, x

′
r)(tr)‖

≤
∥∥∥∥C(t, 0)[x0 + p(x, x′)]

∥∥∥∥+
∥∥∥∥S(t, 0)[y0 + q(x, x′)− g(0, x(0), x′(0))]

∥∥∥∥
+
∥∥∥∥∫ t

0
C(t, s)g(s, x(s), x′(s))ds

∥∥∥∥+
∥∥∥∥∫ t

0
S(t, s)f(s, x(s), x′(s))ds

∥∥∥∥
+
∥∥∥∥∫ t

0
S(t, s)BB∗S∗(b, t)R(α,Γb0)

[
xb − C(b, 0)[x0 + p(x, x′)]− S(b, 0)[y0 + q(x, x′)

− g(0, x(0), x′(0))]−
∫ b

0
C(b, s)g(s, x(s), x′(s))ds−

∫ b

0
S(b, s)f(s, x(s), x′(s))ds

]∥∥∥∥
+
∥∥∥∥ ∂
∂t
C(t, 0)[x0 + p(x, x′)]

∥∥∥∥+
∥∥∥∥ ∂
∂t
S(t, 0)[y0 + q(x, x′)− g(0, x(0), x′(0))]

∥∥∥∥
+
∥∥∥∥g(t, x(t), x′(t))

∥∥∥∥+
∥∥∥∥∫ t

0

∂

∂t
C(t, s)g(s, x(s), x′(s))ds

∥∥∥∥+
∥∥∥∥∫ t

0

∂

∂t
S(t, s)f(s, x(s), x′(s))ds

∥∥∥∥
+
∥∥∥∥∫ t

0

∂

∂t
S(t, s)BB∗S∗(b, t)R(α,Γb0)

[
xb − C(b, 0)[x0 + p(x, x′)]− S(b, 0)[y0 + q(x, x′)

− g(0, x(0), x′(0))]−
∫ b

0
C(b, s)g(s, x(s), x′(s))ds−

∫ b

0
S(b, s)f(s, x(s), x′(s))ds

]∥∥∥∥
≤M(‖x0‖+ Lpr + ‖p(0, 0)‖) +N(‖y0‖+ Lqr + ‖q(0, 0)‖+ Lgr + L∗g) + bM(Lgr + L∗g)

+N

∫ b

0
λr(s)ds+

1

α
N2M2

Bb
[
‖xb‖+M(‖x0‖+ Lpr + ‖p(0, 0)‖) +N(‖y0‖+ Lqr + ‖q(0, 0)‖

+ Lgr + L∗g) + bM(Lgr + L∗g) +N

∫ b

0
λr(s)ds

]
+M∗(‖x0‖+ Lpr + ‖p(0, 0)‖)

+N∗(‖y0‖+ Lqr + ‖q(0, 0)‖+ Lgr + L∗g) + (Lgr + L∗g) + bM∗(Lgr + L∗g) +N∗
∫ b

0
λr(s)ds
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+
1

α
NN∗M2

Bb
[
‖xb‖+M(‖x0‖+ Lpr + ‖p(0, 0)‖) +N(‖y0‖+ Lqr + ‖q(0, 0)‖+ Lgr + L∗g)

+ bM(Lgr + L∗g) +N

∫ b

0
λr(s)ds

]
Dividing both sides of the equation by r and taking the limit as n→∞, we get

(M +M∗)[Lp + bLg] + (N +N∗)[Lq + Lg + δ] + Lg+
1

α
NM2

Bb(N +N∗)[M(Lp + bLg)

+N(Lq + Lg + δ)] ≥ 1.

This contradicts with the condition (3.1). Hence, for some r > 0, Υ(Br) ⊆ Br.

Step 2: The set Π(t) = {Υ(x, x′)(t) ∈ (C[0, b]× C[0, b], X)|x ∈ Q} is an equicontinuous family
of function on [0, b]. For 0 < t1 < t2 ≤ b and ε < 0, then

‖Υ1(x, x
′)(t1)−Υ1(x, x

′)(t2)‖
≤‖C(t1, 0)− C(t2, 0)‖‖[x0 + p(x, x′)]‖+ ‖S(t1, 0)− S(t2, 0)‖‖[y0 + q(x, x′)

− g(0, x(0), x′(0))]‖+
∥∥∥∥∫ t2

t1

C(t2, s)g(s, x(s), x′(s))ds
∥∥∥∥

+
∥∥∥∥∫ t1−ε

0
[C(t1, s)− C(t2, s)]g(s, x(s), x′(s))ds

∥∥∥∥
+
∥∥∥∥∫ t1

t1−ε
[C(t1, s)− C(t2, s)]g(s, x(s), x′(s))ds

∥∥∥∥+
∥∥∥∥∫ t2

t1

S(t2, s)f(s, x(s), x′(s))ds
∥∥∥∥

+
∥∥∥∥∫ t1−ε

0
[S(t1, s)− S(t2, s)]f(s, x(s), x′(s))ds

∥∥∥∥
+
∥∥∥∥∫ t1

t1−ε
[S(t1, s)− S(t2, s)]f(s, x(s), x′(s))ds

∥∥∥∥+
∥∥∥∥∫ t2

t1

S(t2, η)Bu(η, x)dη
∥∥∥∥

+
∥∥∥∥∫ t1−ε

0
[S(t1, η)− S(t2, η)]Bu(η, x)dη

∥∥∥∥
+
∥∥∥∥∫ t1

t1−ε
[S(t1, η)− S(t2, η)]Bu(η, x)dη

∥∥∥∥
≤‖C(t1, 0)− C(t2, 0)‖‖[x0 + p(x, x′)]‖+ ‖S(t1, 0)− S(t2, 0)‖‖[y0 + q(x, x′)

− g(0, x(0), x′(0))]‖+M

∫ t2

t1

(Lg‖x(s) + x′(s)‖+ L∗g)ds

+

∫ t1−ε

0
[C(t1, s)− C(t2, s)](Lg‖x(s) + x′(s)‖+ L∗g)ds

+

∫ t1

t1−ε
[C(t1, s)− C(t2, s)](Lg‖x(s) + x′(s)‖+ L∗g)ds+N

∫ t2

t1

λr(s)ds

+

∫ t1−ε

0
[S(t1, s)− S(t2, s)]λr(s)ds+

∫ t1

t1−ε
[S(t1, s)− S(t2, s)]λr(s)ds

+NMB

∫ t2

t1

‖u(η, x)‖dη +MB

∫ t1−ε

0
[S(t1, η)− S(t2, η)]‖u(η, x)‖dη

+MB

∫ t1

t1−ε
[S(t1, η)− S(t2, η)]‖u(η, x)‖dη.
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Similarly, we find that

‖Υ2(x, x
′)(t1)−Υ2(x, x

′)(t2)‖

≤
∥∥∥∥ ∂

∂t1
C(t1, 0)− ∂

∂t2
C(t2, 0)

∥∥∥∥∥∥∥∥x0 + p(x, x′)
∥∥∥∥+

∥∥∥∥ ∂

∂t1
S(t1, 0)− ∂

∂t2
S(t2, 0)

∥∥∥∥
×
∥∥∥∥y0 + q(x, x′)− g(0, x(0), x′(0))

∥∥∥∥+
∥∥∥∥g ((t, x(t1), x

′(t1))− g(t, x(t2), x
′(t2))

) ∥∥∥∥
+
∥∥∥∥∫ t2

t1

∂

∂t2
C(t2, s)g(s, x(s), x′(s))ds

∥∥∥∥+
∥∥∥∥∫ t1−ε

0

[ ∂
∂t1

C(t1, s)−
∂

∂t2
C(t2, s)

]
× g(s, x(s), x′(s))ds

∥∥∥∥+
∥∥∥∥∫ t1

t1−ε

[ ∂
∂t1

C(t1, s)−
∂

∂t2
C(t2, s)

]
g(s, x(s), x′(s))ds

∥∥∥∥
+
∥∥∥∥∫ t2

t1

∂

∂t2
S(t2, s)f(s, x(s), x′(s))ds

∥∥∥∥+
∥∥∥∥∫ t1−ε

0

[ ∂
∂t1

S(t1, s)−
∂

∂t2
S(t2, s)

]
× f(s, x(s), x′(s))ds

∥∥∥∥+
∥∥∥∥∫ t1

t1−ε

[ ∂
∂t1

S(t1, s)−
∂

∂t2
S(t2, s)

]
f(s, x(s), x′(s))ds

∥∥∥∥
+
∥∥∥∥∫ t2

t1

∂

∂t2
S(t2, η)Bu(η, x)dη

∥∥∥∥+
∥∥∥∥∫ t1−ε

0

[ ∂
∂t1

S(t1, η)− ∂

∂t2
S(t2, η)

]
×Bu(η, x)dη

∥∥∥∥+
∥∥∥∥∫ t1

t1−ε

[ ∂
∂t1

S(t1, η)− ∂

∂t2
S(t2, η)

]
Bu(η, x)dη

∥∥∥∥
≤
∥∥∥∥ ∂

∂t1
C(t1, 0)− ∂

∂t2
C(t2, 0)

∥∥∥∥∥∥∥∥[x0 + p(x, x′)]
∥∥∥∥+

∥∥∥∥ ∂

∂t1
S(t1, 0)− ∂

∂t2
S(t2, 0)

∥∥∥∥
×
∥∥∥∥y0 + q(x, x′)− g(0, x(0), x′(0))

∥∥∥∥+
∥∥∥∥g ((t, x(t1), x

′(t1))− g(t, x(t2), x
′(t2))

) ∥∥∥∥
+M∗

∫ t2

t1

(Lg‖x(s) + x′(s)‖+ L∗g)ds+

∫ t1−ε

0

[ ∂
∂t1

C(t1, s)−
∂

∂t2
C(t2, s)

]
× (Lg‖x(s) + x′(s)‖+ L∗g)ds+

∫ t1

t1−ε

[ ∂
∂t1

C(t1, s)−
∂

∂t2
C(t2, s)

]
(Lg‖x(s) + x′(s)‖

+ L∗g)ds+N∗
∫ t2

t1

λr(s)ds+

∫ t1−ε

0

[ ∂
∂t1

S(t1, s)−
∂

∂t2
S(t2, s)

]
λr(s)ds

+

∫ t1

t1−ε

[ ∂
∂t1

S(t1, s)−
∂

∂t2
S(t2, s)

]
λr(s)ds+N∗MB

∫ t2

t1

‖u(η, x)‖dη

+MB

∫ t1−ε

0

[ ∂
∂t1

S(t1, η)− ∂

∂t2
S(t2, η)

]
‖u(η, x)‖dη

+MB

∫ t1

t1−ε

[ ∂
∂t1

S(t1, η)− ∂

∂t2
S(t2, η)

]
‖u(η, x)‖dη

The right-hand side of the above inequality tends to zero independently of x ∈ Q as (t1−t2)→ 0
and ε sufficiently small, since the compactness of the evolution operator C(t, s), S(t, s) implies
the continuity in the uniform operator topology. Thus Υ(x, x′)(t) sends Q into equicontinuous
family of functions.
Step 3. The set Π(t) =

{
Υ(x, x′)(t) : x ∈ Q

}
is relatively compact in X for every t ∈ I. The

case t = 0 is trivial. Clearly, Π(0) =
{

(Υx)(0) : (x, x′)(·) ∈ Q
}

= x0 + p(x, x′) is compact in X.

© JGRMA 2018, All Rights Reserved                                                      66

M Tamil Selvan et al, Journal of Global Research in Mathematical Archives, 58-76



So, let t ∈ (0, b] be fixed and ε a real number satisfying 0 < ε < t ≤ b. We define x ∈ Q,

Υε
1(x, x

′)(t) =C(t, 0)[x0 + p(x, x′)] + S(t, 0)[y0 + q(x, x′)− g(0, x(0), x′(0))]

+

∫ t−ε

0
C(t, s)g(s, x(s), x′(s))ds+

∫ t−ε

0
S(t, s)f(s, x(s), x′(s))ds

+

∫ t−ε

0
S(t, η)Bu(η, x)dη

Since S(t, s) is a compact operator, the set Πε(t) =
{

Υε
1(x, x

′)(t) : (x, x′)(·) ∈ Q
}

is relatively
compact in X for each ε, 0 < ε < t. Moreover, for each 0 < ε < t, we have

‖Υ1(x, x
′)(t)−Υε

1(x, x
′)(t)‖ ≤

∫ t

t−ε
‖C(t, s)g(s, x(s), x′(s))‖ds+

∫ t

t−ε
‖S(t, s)f(s, x(s), x′(s))‖ds

+

∫ t

t−ε
‖S(t, η)Bu(η, x)‖dη

≤M
∫ t

t−ε
(Lg‖x(s) + x′(s)‖+ L∗g)ds+N

∫ t

t−ε
λr(s)ds

+NMB

∫ t

t−ε
‖u(η, x)‖dη, t ∈ I.

Similarly,

‖Υ2(x, x
′)(t)−Υε

2(x, x
′)(t)‖ ≤‖g(t, x(t), x′(t))− C(ε)g(t− ε, x(t− ε), x′(t− ε))‖

+

∫ t

t−ε
‖ ∂
∂t
C(t, s)g(s, x(s), x′(s))‖ds

+

∫ t

t−ε
‖ ∂
∂t
S(t, s)f(s, x(s), x′(s))‖ds

+

∫ t

t−ε
‖ ∂
∂t
S(t, η)Bu(η, x)‖dη

≤‖g(t, x(t), x′(t))− C(ε)g(t− ε, x(t− ε), x′(t− ε))‖

+M∗
∫ t

t−ε
(Lg‖x(s) + x′(s)‖+ L∗g)ds+N∗

∫ t

t−ε
λr(s)ds

+N∗MB

∫ t

t−ε
‖u(η, x)‖dη, t ∈ I.

There exists relatively compact sets arbitrarily close to the set Π(t), for each t ∈ (0, b]. Hence
Π(t), t ∈ (0, b] is relatively compact in X. Since it is compact at t = 0, we have Π(t) is relatively
compact in X for all t ∈ [0, b].

Step 4. The map Υ(·) is continuous on Q.
Let {xn}∞n=0 be a sequence in Q and we can find a number q > 0 in such a way that

‖xn(t)‖ ≤ q, for all n and a.e. t ∈ I. So, xn = Bq = {x ∈ Q : ‖x‖ ≤ q} ⊆ Q and x ∈ Bq.

g(s, xn(s), x′n(s))→g(s, x(s), x′(s)),

f(s, xn(s), x′n(s))→f(s, x(s), x′(s)),

u(s, zn + y)→u(s, z + y),
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for every t ∈ I and by (H2),

‖g(s, xn(s), x′n(s))− g(s, x(s), x′(s))‖ ≤ 2(Lgq
′ + L∗g)

‖f(s, xn(s), x′n(s))− f(s, x(s), x′(s))‖ ≤ 2λq(s),

‖u(s, zn + y)− u(s, z + y)‖ ≤ 2

α
Lu,

where

Lu =NMB

[
‖xb‖+M‖x0 + p(x, x′)‖+N‖y0 + q(x, x′)− g(0, x(0), x′(0))‖

+M

∫ b

0
(Lgq + L∗g)ds+N

∫ b

0
λq(s)ds

]
.

By the above steps and Lebesgue Dominated Convergence theorem, we get

‖Υ1(xn, x
′
n)(t)−Υ1(x, x

′)(t)‖ ≤ sup
t∈I

[∥∥∥∥ ∫ t

0
C(t, s)[g(s, xn(s), x′n(s))− g(s, x(s), x′(s))]ds

+

∫ t

0
S(t, s)[f(s, xn(s), x′n(s))− f(s, x(s), x′(s))]ds

+

∫ t

0
S(t, η)[Bu(η, xn)−Bu(η, x)]dη

∥∥∥∥]
≤M

∫ b

0
‖g(s, xn(s), x′n(s))− g(s, x(s), x′(s))‖ds

+N

∫ b

0
‖f(s, xn(s), x′n(s))− f(s, x(s), x′(s))‖ds

+NMB

∫ b

0
‖u(η, xn)− u(η, x)‖dη

→ 0 as n→∞,

and

‖Υ2(xn, x
′
n)(t)−Υ2(x, x

′)(t)‖ ≤ sup
t∈I

[∥∥∥∥[g(t, xn(t), x′n(t))− g(t, x(t), x(t))]

+

∫ t

0

∂

∂t
C(t, s)[g(s, xn(s), x′n(s))− g(s, x(s), x′(s))]ds

+

∫ t

0

∂

∂t
S(t, s)[f(s, xn(s), x′n(s))− f(s, x(s), x′(s))]ds

+

∫ t

0

∂

∂t
S(t, η)[Bu(η, xn)−Bu(η, x)]dη

∥∥∥∥]
≤‖[g(t, xn(t), x′n(t))− g(t, x(t), x(t))]‖

+M∗
∫ b

0
‖g(s, xn(s), x′n(s))− g(s, x(s), x′(s))‖ds

+N∗
∫ b

0
‖f(s, xn(s), x′n(s))− f(s, x(s), x′(s))‖ds

+N∗MB

∫ b

0
‖u(η, xn)− u(η, x)‖dη

→ 0 as n→∞,
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which implies that

lim
n→∞

‖Υ(xn, x
′
n)(t)−Υ(x, x′)(t)‖ = 0.

Thus, Υ is continuous. Hence Υ(·) is equicontinuous and also bounded. By the Ascoli-Arzela
theorem, Υ is relatively compact in C([0, b]×[0, b], X). Also, Υ is continuous on C([0, b]×[0, b], X).
Hence, Υ is completely continuous operator on C([0, b] × [0, b], X). Thus from the Schauder’s
fixed point theorem, Υ has a fixed point, which is a mild solution of system (1.1)-(1.2).

Definition 3.2. The control system (1.1) is said to be approximately controllable on I if
R(b, x0) = X, where R(b, x0) = {xb(x0;u) : u(·) ∈ L1(I, U)} is called the reachable set of
system (1.1) at terminal time b and its closure in X is denoted by R(b, x0); Let xb(x0, u) be
the state value of (1.1) at terminal time b corresponding to the control u and the initial value
x0 ∈ X.

Frankly speaking, by using the control function u, from any given initial point x0 ∈ X we
can move the system with the trajectory as close as possible to any other final point xb ∈ X.

Theorem 3.3. Suppose that the assumptions (H0)-(H5) hold. Then the nonlinear second order
differential equation (1.1)-(1.2) is approximately controllable on I.

Proof. Let x̂α(·) be a fixed point of Υ in Q. By Theorem 3.1, any fixed point of Υ is a mild
solution of (1.1)-(1.2) under the control

ûα(t) = B∗S∗(b, t)R(α,Γb0)p(x̂α)

and satisfies the following inequality

x̂α(b) = xb + αR(α,Γb0)p(x̂α). (3.2)

By the condition (H3) and (H4),∫ b

0
‖g(s, x̂α(s), x̂′α(s))‖2ds ≤ bL2

g,∫ b

0
‖f(s, x̂α(s), x̂′α(s))‖2ds ≤ bL2

f .

Moreover by assumption on f and Dunford-Pettis theorem, we have that g(s, x̂α(s), x̂′α(s)) and
f(s, x̂α(s), x̂′α(s)) are weakly compact in L1(I,X), so there is a subsequence, still denoted by
g(s, x̂α(s), x′α(s)) and f(s,̂ xα(s),̂ x′α(s)), that converges weakly to, say g(s) and f(s), in L1(I,X).̂
Define

w =xb − C(b, 0)[x0 + p(x, x′)]− S(b, 0)[y0 + q(x, x′)]−
∫ b

0
C(b, s)g(s)ds−

∫ b

0
S(b, s)f(s)ds

Now we have,

‖p(x̂α)− w‖ =
∥∥∥∥∫ b

0
C(b, s)[g(s, x̂α(s), x̂′α(s))− g(s)]ds

∥∥∥∥
+
∥∥∥∥∫ b

0
S(b, s)[f(s, x̂α(s), x̂′α(s))− f(s)]ds

∥∥∥∥
≤ sup

t∈I

[∥∥∥∥ ∫ t

0
C(b, s)[g(s, x̂α(s), x̂′α(s))− g(s)]ds

∥∥∥∥
+
∥∥∥∥∫ t

0
S(b, s)[f(s, x̂α(s), x̂′α(s))− f(s)]ds

∥∥∥∥] (3.3)
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By using infinite-dimensional version of the Ascoli-Arzela theorem, we can show that an operator
l(·) →

∫ ·
0 S(·, s)l(s)ds : L1(I,X) → C(I,X) is compact. Therefore, we obtain that ‖p(x̂α) −

w‖ → 0 as α→ 0+. Moreover, from (3.2) we get

‖xα(b)− xb‖ ≤‖αR(α,Γb0)(w)‖+ ‖αR(α,Γb0)‖‖p(̂ x̂α)− w‖
≤‖αR(α,Γb0)(w)‖+ ‖p(xα)− w‖.̂

It follows from assumption (H0) and the estimation (3.3) that ‖x̂α(b) − xb‖ → 0 as α → 0+.
This proves the approximate controllability of differential equation (1.1)-(1.2).

4 Second order impulsive evolution differential equation

Various evolutionary processes from fields such as physics, population dynamics, aeronautics,
economics and engineering are characterized by the fact that they undergo abrupt changes of
state at certain moments of time between intervals of continuous evolution. Since the duration
of these changes are often negligible compared to the total period of time, such changes can
be reasonably well approximated in the form of impulses. These process tend to more suit-
ably modeled by impulsive differential equations. For more details on this theory, we refer the
monographs of [3, 6, 9, 20, 22, 29–31, 37, 38].

Inspired by the above works, in this paper, we establish sufficient conditions for the approxi-
mate controllability for a class of second-order neutral impulsive evolution differential equations
with nonlocal conditions in Banach spaces of the form

d

dt
[x′(t)− g

(
t, x(t), x′(t)

)
] =A(t)x(t) + f

(
t, x(t), x′(t)

)
+Bu(t), t ∈ I = [0, b], (4.1)

x(0) =x0 + p(x, x′), x′(0) = y0 + q(x, x′), (4.2)

∆x(ti) =Ii(x(ti), x
′(ti)), i = 1, 2, ...n, (4.3)

∆x′(ti) =Ji(x(ti), x
′(ti)), i = 1, 2, ...n. (4.4)

In this equation, A(t) : D(A(t)) ⊆ X → X is a closed linear operator on a Banach space X
with norm ‖ · ‖. Here U is a Banach space and B is a bounded linear operator from U to X
and the functions. Also, f : I ×X ×X → X, p, q : PC ×PC → X are the appropriate functions
defined later. Similarly, the functions Ii(·) : X ×X → X, Ji(·) : X ×X → X defined later in
the preliminaries section. The symbol ∆ξ(t) represents the jump of the function ξ(·) at t, which
is defined by ∆ξ(t) = ξ(t+)− ξ(t−).

To consider the impulsive conditions (4.3)−(4.4), it is necessary to introduce some additional
concepts and notations.

To simplify the notations, we put t0 = 0, tn+1 = b. Now we define the space PC([0, b], X)
formed by the functions x : [0, b] → X such that x(·) is continuous at t 6= ti, x(t−i ) = x(ti) and
x(t+i ) exists for all i = 1, 2, ..., n, endowed with the uniform norm ‖ · ‖PC which is defined by
‖x‖PC = sups∈I ‖x(s)‖. It is clear that (PC, ‖ ·‖PC) is a Banach space. Similarly, PC′ will be the
space of the functions x ∈ PC such that x is continuously differentiable on I\{ti : i = 1, 2, ..., n}
and the lateral derivatives x′R(t) = lims→0+

x(t+s)−x(t+)
s , x′L(t) = lims→0−

x(t+s)−x(t−)
s are the

continuous functions on [ti, ti+1)and (ti, ti+1] respectively. Next, for x ∈ PC′, we represent by
x′(t) the left derivative at t ∈ (0, b] and by x′(0) the right derivative at zero. It is easy to see
that the space PC′ endowed with the norm ‖x‖PC′ = ‖x‖PC + ‖x′‖PC is a Banach space.
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(H6) There are positive constants LIi , LJi such that

‖Ii(x1, y1)− Ii(x2, y2)‖ ≤ LIi [‖x1 − x2‖+ ‖y1 − y2‖],
‖Ji(x1, y1)− Ji(x2, y2)‖ ≤ LJi [‖x1 − x2‖+ ‖y1 − y2‖], ∀xi, yi ∈ X, i = 1, 2.

Definition 4.1. A function x ∈ [0, b]→ X is said to be a mild solution of the system (4.1)-(4.4)
if x(t) ∈ D(A(t)), for each t ∈ I and satisfies the following integral equation

x(t) =C(t, 0)[x0 + p(x, x′)] + S(t, 0)[y0 + q(x, x′)− g(0, x(0), x′(0))]

+

∫ t

0
C(t, s)g(s, x(s), x′(s))ds+

∫ t

0
S(t, s)f(s, x(s), x′(s))ds+

∫ t

0
S(t, s)Bu(s)ds

+
∑

0<ti<t

C(t, ti)Ii(x(ti), x
′(ti)) +

∑
0<ti<t

S(t, ti)Ji(x(ti), x
′(ti)), t ∈ I.

Theorem 4.2. Assume that the assumptions of Theorem 3.1 are satisfied. Further, if the hy-
pothesis (H6) is satisfied, then the system (4.1)-(4.4) is approximately controllable on I provided
that

(M +M∗)
[
Lp + bLg +

n∑
i=1

LIi

]
+ (N +N∗)

[
Lq + Lg + δ +

n∑
i=1

LJi

]
+ Lg

+
1

α
NM2

Bb(N +N∗)
[
M
(
Lp + bLg +

n∑
i=1

LIi

)
+N

(
Lq + Lg + δ +

n∑
i=1

LJi

)]
< 1,

where MB = ‖B‖.

Proof. We define the operator Υ : Z → Z bŷ
Υ̂(x, x′) = (Υ̂1(x, x

′), Υ̂2(x, x
′))

where

Υ̂1(x, x
′) =C(t, 0)[x0 + p(x, x′)] + S(t, 0)[y0 + q(x, x′)− g(0, x(0), x′(0))]

+

∫ t

0
C(t, s)g(s, x(s), x′(s))ds+

∫ t

0
S(t, s)f(s, x(s), x′(s))ds+

∫ t

0
S(t, s)Bu(s, x)ds

+
∑

0<ti<t

C(t, ti)Ii(x(ti), x
′(ti)) +

∑
0<ti<t

S(t, ti)Ji(x(ti), x
′(ti)),

Υ̂2(x, x
′) =

∂

∂t
C(t, 0)[x0 + p(x, x′)] +

∂

∂t
S(t, 0)[y0 + q(x, x′)− g(0, x(0), x′(0))] + g(t, x(t), x′(t))

+

∫ t

0

∂

∂t
C(t, s)g(s, x(s), x′(s)) +

∫ t

0

∂

∂t
S(t, s)f(s, x(s), x′(s))ds

+

∫ t

0

∂

∂t
S(t, s)Bu(s, x)ds+

∑
0<ti<t

∂

∂t
C(t, ti)Ii(x(ti), x

′(ti))

+
∑

0<ti<t

∂

∂t
S(t, ti)Ji(x(ti), x

′(ti))

u(t, x) =B∗S∗(b, t)R(α,Γb0)p(x(·)),
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where

p(x(·)) =xb − C(b, 0)[x0 + p(x, x′)]− S(b, 0)[y0 + q(x, x′)− g(0, x(0), x′(0))]

−
∫ b

0
C(b, s)g(s, x(s), x′(s))−

∫ b

0
S(b, s)f(s, x(s), x′(s))ds

−
∑

0<ti<b

C(b, ti)Ii(x(ti), x
′(ti))−

∑
0<ti<b

S(b, ti)Ji(x(ti), x
′(ti))

By following the techniques in Theorem 3.1, for all α > 0, the operator Υ has a fixed point.̂
Hence, we can show that the system (4.1)-(4.4) is approximately controllable with the help of
Theorem 3.3. Since the proof of this theorem is similar to that of Theorem 3.1 and Theorem
3.3, we can skip this section.

5 An application

In this section, we apply our abstract results to a concrete impulsive partial differential
equation. The following technical framework is needed to prove our results.

Here we consider A(t) = A+ B̃(t) where A is the infinitesimal generator of a cosine function
C0(t) with associated sine function S0(t), and B̃(t) : D(B̃(t)) → X is a closed linear operator
with D ⊆ D(B̃(t)) for all t ∈ I. In this application, we use the space X = L2(T,C), where the
group T is defined as the quotient R/2πZ. We will use the identification between functions on T
and 2π-periodic 2-integrable functions from R into C. Similarly, H2 (T,C) denotes the Sobolev
space of 2π-periodic functions x : R→ C such that x′′ ∈ L2 (T,C).

We introduce the operator Ax(ξ) = x′′(ξ) with domain D(A) = H2 (T,C), where A is the
infinitesimal generator of a strongly continuous cosine family C0(t) on X. Furthermore, A has
a discrete spectrum, the eigen values are −n2 for n ∈ Z, with associated eigenvectors

zn(ξ) =
1√
2π
einξ, n ∈ Z

and the following properties hold:
(a) The set {zn : n ∈ Z} is an orthonormal basis of X. In particular,

Ax = −
∞∑
n=1

n2〈x,wn〉wn, for x ∈ D(A).

(b) For x ∈ X, the cosine function C0(t) is given by

C0(t)x =
∞∑
n=1

cos(nt)〈x,wn〉wn, t ∈ R,

with associated sine function

S0(t)x =

∞∑
n=1

sin(nt)

n
〈x,wn〉wn, t ∈ R.

It is clear that ‖C0(t)‖ ≤ 1 for all t ∈ R. Thus, C0(·) is uniformly bounded on R. Consider the
second-order partial differential problem with control

∂

∂t

[ ∂
∂t
u(t, ξ) +G(t, u(t, ξ),

∂

∂t
u(t, ξ))

]
=

∂2

∂ξ2
u(t, ξ)+b(t)

∂

∂t
u(t, ξ) + µ(t, ξ)

+ F (t, u(t, ξ),
∂

∂t
u(t, ξ)), (5.1)
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for t ∈ I, 0 ≤ ξ ≤ π, subject to the initial conditions

u(t, 0) =u(t, π) = 0, t ∈ I, (5.2)

u(0, ξ) =z0(ξ) +
n∑
i=1

αiu(ti, ξ), (5.3)

∂

∂t
u(0, ξ) =z1(ξ) +

n∑
i=1

βiu(si, ξ), 0 ≤ ξ ≤ π, (5.4)

where z0, z1 ∈ X, ai, ãi ∈ C(R,R) and 0 < ti, si < π, αi, βi are prefixed numbers, b : [0,∞) →
R, G, F : I ×X ×X → X are continuous functions. We fix a > 0 and set β = sup0≤t≤a |b(t)|.

We take B̃(t)x(ξ) = b(t)x′(ξ) defined on H1(T,C). We have to show that the control function
µ which steers (5.1) from any specified initial state to the final state in a Banach space X.

Assume that the bounded linear operator B : U ⊂ I → X is define by

B(u(t))(ξ) = µ(t, ξ), ξ ∈ [0, π],

where µ : I × [0, π] → [0, π] is continuous. Define the operators f, g : I × X × X → X, p, q :
C × C → X which are continuous by

g(t, x, y)(ξ) =G(t, x(ξ), y(ξ)),

f(t, x, y)(ξ) =F (t, x(ξ), y(ξ)),

p(x, y)(ξ) =

n∑
i=1

αix(ti, ξ),

q(x, y)(ξ) =

n∑
i=1

βix(ti, ξ),

Assume these functions satisfy the requirement of hypotheses. From the above choices of the
functions and evolution operator A(t) with B = I , the system (5.1)-(5.4) can be formulated as
an abstract second order semilinear system (1.1)-(1.2) in X. Since all hypotheses of Theorem
3.3 are satisfied, approximate controllability of system (5.1)-(5.4) on I follows from Theorem
3.3.
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