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INTRODUCTION 

 

The Saint-Venant principle (see [4], [14]) is expressed in the planar theory of elasticity as a prior estimate 

for a solution of a biharmonic equation satisfying homogeneous boundary conditions of the first boundary 

value problem in the part of the domain boundary. Such energetic estimates were obtained first in [7], [5]. 

These estimates do not take into account character of transformation of the body form at moving off from 

those part of the bound where exterior forces are applied. In [10], another proof of the Saint-Venant’s 

principle in the planar theory of elasticity was given. The energetic estimate obtained in this connection 

considered character of transformation of the body form. As a corollary of this estimate, the uniqueness 

theorem for the first boundary value problem of the planar theory of elasticity in unlimited domains and also 

Pharagmen-Lindelof type theorems were obtained. Some Pharagmen-Lindelof type theorems were proved 

for equations of the theory of elasticity in [16] and for elliptic equations of higher order in [2]-[9]. The Saint-

Venant principle for a cylindrical body was proved in [15]. An analog of the Saint-Venant principle, 

uniqueness theorems in unlimited domains, and Pharagmen-Lindelof type theorems were obtained for the 

system of equations of the theory of elasticity in [12] in the case of space with boundary conditions of the 

first boundary value problem. For the mixed problems similar results were derived in [13]. 

 In the present paper, the analogy of the Saint-Venant principle is established for the generalized 

solution of the third order pseudo elliptical type equation. Also uniqueness theorems are obtained for 

solutions of the first boundary value problem in classes of functions increasing in infinity depending on the 

geometric characteristics of the domain (0, ),Q D T   were 1{ : 0},nD x x      is bounded 

domain. Boundary value problems for the third order pseudo elliptical type equations in bounded domains 

were considered in [8]. 

 We shall note else work [6], [1], which by means of principle Saint-Venant’s is studied asymptotic 

characteristic of the solutions of the third order equations of the composite type and dynamic systems. 

 

 1. Notations and formulation of the problem 

 Consider in the unlimited domain Q  the equation 



A.R. Khashimov, Journal of Global Research in Mathematical Archives, 01-07 

© JGRMA 2017, All Rights Reserved   2 

0 1 ( , , )L lu L u Mu f x y t    

where 

0( ) ( ) ,
k

k
t xlu u x u x u       1 ( ) ( ) ,

i j i

ij i
x x xL u b x u b x u   

0( ) ( ) ( ) ,
i j i

ij i
o t x x xL u u a x u a x u a x u     

0( ) ( ) ( ) .
p q p

pq p
y y yMu c x u c x u c x u    

 We suppose here and later on that the summation is carried out by repeating indexes, all coefficients 

in (1) and their derivatives are bounded and measurable in any finite sub domain of the domain Q . Also we 

suppose that boundary of Q  is smooth or piecewise-smooth. We assume that the operators ,oL  M  are 

uniformly elliptic, i.e. 
2 2 1

0 1, | | | | , ( , , ) ,ij ji ij n m
i ja a a x y t Q Q                 

2 2 1
0 1, | | | | , ( , , ) , .pq qp ij n m

i jc c a x y t Q Q                    (2) 

 Let G D   and 
1 1

( ) ( , , , , , , )
n mx x y y tx         is a vector of the inner normal of Q  in 

the point ( , , ).x y t  

We break up the bound of Q .Denote 

0 {( , , ) (0, ) : 0},k
kx y t G T       

1 {( , , ) (0, ) : 0},k
kx y t G T       

2 {( , , ) (0, ) : 0},k
kx y t G T       

Consider in Q  the boundary value problem 

0 1 ( , , ),L lu L u Mu f x y t    

2
| 0, | 0.

k

k
Q xu u         (3) 

Define the operator d : 

0 0 0

0 0 0

( ) ( )

( ) .

i j k ik

t i j i

ij k ij ij ij i i i k i i
t x x x t xx

ij i
x x x

du b a a a u b a a a a u

a a u d u d u du

    



         

    
 

Assume that the condition 

2 2 1
0 1, | | | | , ( , , ) ,ij ji ij n m

i jd d d x y t Q Q                      (4) 

holds. 

 Let 

1 1{( , , ) : 0 }, { : 0 },Q Q x y t y G G y y             

0, {( . . ) (0, ) : 0},k
kx y t G T        

1, {( , , ) (0, ) : 0},k
kx y t G T        

2, {( , , ) (0, ) : 0}.k
kx y t G T        

 For some 0,h   define 
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2, , 2, 2, 2, 2, 2, ,{( , , ) : (( , , ), ) }, .h
h hx y t x y t h                ‚  

 Let ( )E Q  be a set of functions  2C Q  such that 0   in (0, )G T   and 0
k

k
x    on 

0, 1, 2,
h

       for some 0.h   

 We denote as ( )H Q  the Hilbert space obtained by closing ( )E Q  with respect to the norm 

 
2,

1

2
2 2

( ) 1 ,
i j p q i j

ij k ij
H Q x x y y t k x x

Q

u d u u u u u u dxdydt a u u ds


 

 
  

     
  
 ‖ ‖  

where 

1

0

1 1 1
,

2 2 2j

ij j ij ij j i ij ij
txd a a a d a 


       

2 2 1
1 1 0 1 1, | | | | , ( , , ) , .ij ji ij n m

i jd d d x y t Q Q                 

Now consider bilinear form 

 ( , )
i j k i j i jj

k ij ij k ij i k
x x x x x t x xx

Q

a u a u a u a a u


          


 

     i j i i p q pj i q

ij i ij ij i i pq p pq
x x x x t y y yx x yd u d d u a a u c u c c u               

   0 0 0 .
ip p q i j

p pq i ij
t t t xy y y x xu a u c c c d d d u dxdydt            

Definition. If ( , , ) ( )u x y t H Q  for any    and 

( , )
Q

a u f dxdydt


        (5) 

for an arbitrary function ( ),E Q  | 0S
   where 1{( , , ) : },S Q x y t y     then the function 

( , , )u x y t  is said to be a generalized solution of the problem (1), (3) in the domain Q . 

 

2. Energy inequalities 

 Theorem 1. (Analog of the Saint-Venant principle) Let 01 0;
i

ij i
xa a a      

0 0 0

1 1 1 1
0,

2 2 2 2ii j p q p

ij i pq p
xx x y y yd d d c c c          ( , , ) .x y t Q Q    If ( , , )u x y t  is 

generalized solution of the problem (1), (3) and ( , , ) 0f x y t   at 1 2 ,y   then for any 1  such that 

1 20 ,    takes place 

1 2

1
1 2( ) ( , ) ( )

Q Q

E u dxdydt E u dxdydt
 

       (6) 

where 
2 2( ) .

i j p q

ij pq
x x y y tE u d u u c u u u u     

Here 2( , )   is a solution of the problem 

1 2,) ,' (              (7) 

2 2( , ) 1,    
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( )   is an arbitrary continuous function such that 

1

0 ( ) inf ( ) ' ( ) ' ,
N

S S

E dxdy dt P dxdy dt
 

   

 
 

   
  

      (8) 

2 3( , , , ),my y y y    

 1 1 1 21
( ) ,

2p q

p q
y yP c c c          (9) 

N  is the set of continuously differentiable functions in the neighborhood of S  which are equal to zero in 

 (0, ) .S G T     

 Proof. Assume in (5) 1( ( ) 1)mu y     where 1 1 2( ) ( , )y      if 1 10 ,y    

1 1 2( ) ( , )y y     if 1 1 2 ,y    and 1( ) 1y   if 2 1.y   

( )( ), 0, ( ).m m H Qu E Q u u u H Q
   ‖ ‖  

Then 

2
( , ( 1)) 0  in .m m ma u u u u Q     

Therefore 

2
( , ( 1))  in m m ma u u Q      (10) 

where ( , ( 1)).m m ma u u u       

 It is obvious that 0m   at .m  Integrating by parts (10), we have 

2 2

( )( 1) ( ) .m m m
Q Q

E u dxdydt P u dxdydt
 

       

Hence 

2 2 1

( )( 1) ( ) .m m m
Q Q Q

E u dxdydt P u dxdydt
  

      
‚

  (11) 

 The estimation (6) follows from (8) and (11) at .m  

 Now we will estimate 1( )y  in case when S  can be included to the ( )n m -dimensional 

parallelepiped which smallest edge is equal to ( ).   Suppose that 

1 1
1

1
max ,0 ( ), max ( ).

2 q

q
py

S S
c c c

 

   
  

    
  

 

Applying the Friedreich and Cauchy-Bunyakovsky inequalities, we have from (9) 

 1 1 1 21
( )

2p q

p q
y y

S S S

P dxdy dt c dxdy dt c c dxdy dt
  

           

1 1

2 2
2 2 2( ) ( )

py
S S S

dxdy dt dxdy dt dxdy dt
  

      
   

      
      
    

2

2
0 0

( ) ( ) ( ) ( )
( ) .

S

E dxdy dt


       


  

 
 

 
  



A.R. Khashimov, Journal of Global Research in Mathematical Archives, 01-07 

© JGRMA 2017, All Rights Reserved   5 

Therefore we can set 

 
1

2 2
0( ) ( ) ( ) ( ) ( ) .           



   

 If  1 12 0
q

q
yc c   in ,S  then ( ) 0.    Consequently 

0( ) ,
( ) ( )


 

   
       (12) 

 Examples. 1. Let at 1 1 0,y    the domain Q  lies inside the rotation body 1| | ( 1),
2

M
y y    i.e. 

1 1( ) ( 1),y M y    0.M   We have from (15) 

1 0
1 1

1 1

( )
( ) , ( ) .

( 1) ( )

c y d
y c y

M y y





 


 

Suppose that 1( ) 0.c x c const    

 In this case, from the inequality (6) we have 

1 2 2

1 1
1 2

2

1
( ) ( , ) ( ) ( ) .

1

c

Q Q Q

E u dxdydt E u dxdydt E u dxdydt
  




 


  
    

 
    

2. Consider an example of Q  for which 

1
1

1 1( ) ( 1) , 0.ky c y k const 


       

It is clear that if 1,k   the domain Q  is narrowing at 1 .x   If 1,k   then 1( )x c   and this case 

includes domains lying in the band with the width .c  If 0 1,k   then Q  can be extended respectively 

at 1 .x   For this kind of domains, we can assume 

1
1 1( ) ( 1) .ky y    

 Then the estimate (6) is valid for considered domains if 

1
1 2 2 1( , ) 2exp ( 1) ( 1) .k k             

 As a corollary of the Saint-Venant principle, we have the uniqueness theorem for the problem (1), (3) 

in unlimited domain Q  for classes of functions increasing in infinity depending from ( ).   

 Theorem 2. Let ( , , ) 0f x y t   in Q  and conditions of theorem 1 hold. If ( , , )u x y t  is a 

generalized solution of the problem (1), (3) in Q  and for a sequence m   at m and some 

* 0,r const   

*( ) ( ) ( , )

m

m m
Q

E u dxdydt r


        (13) 

where ( ) 0m    at ,m   then 0u   in 
*
.rQ  

 Proof. We have from (6) considering (13) 

* 2

1
*( ) ( , ) ( ) ( ) 0

r

m m
Q Q

E u dxdydt r E u dxdydt


       

at .m   Hence 0u   in 
*
.d  



A.R. Khashimov, Journal of Global Research in Mathematical Archives, 01-07 

© JGRMA 2017, All Rights Reserved   6 

 Further for any fixed 1 *,r r  we have 

1

* 1 *

( ) ( ) ( )

* 1( , ) ( , ).

rm m

r r r

s ds s ds s ds

m mr e e e c r

 

  

 
  

      

Therefore 

1

1 1
1 1 *( ) ( , ) ( ) ( , ) ( ) ( , )

e m

m m m m
Q Q

E u dxdydt r E u dxdydt r r


           

1 ( ) 0  at .m mc       

Hence, 0u   in 
1
.rQ  Since 1r  was chosen arbitrary, 0u   in .Q  
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