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STATEMENT OF THE PROBLEM 

Let ( , , ) A  be a complete  -finite measure space and let R  be the real line. Let ( )p RP  denote the class of all non-empty 

subsets of R  with property p. Given a closed and bounded interval [0, ]J T  and given a measurable 

function 0 : ,q R  consider the first order random differential inclusion (in short RDI), 
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for all , where : ( )pF J R R P . 

By a random solution of the RDI (1.1) on J   , means a measurable function
1

: ( , )x AC J R  satisfying for each 

, '( , ) ( , )x t v t  for some measurable
1

: ( , )v L J R such that  ( , ) , ( , ),v t F t x t    a.e. 

,t J  where
1
( , )AC J R is the space of continuous real-valued functions whose first derivative is absolutely continuous on J. 

When the right hand side multi-valued function is not convex-valued, the geometrical or algebraic multi-valued fixed-point theory 

is used for proving the existence theorem under certain Lipschitz and monotonicity conditions of multi-valued functions. Here, I 

will prove the existence result for non-convex case of first order random differential inclusion. 

AUXILIARY RESULTS 

Let ( , )M J R denote the class of real-valued measurable functions on J and let ( , )C J R denote the space of continuous real-

valued functions on J. Let
1
( , )L J R  denote the Banach space of Lebesgue integrable functions on J with norm 1|| ||

L
  defined 

by 1

0

|| || ( )

T

L
x x t dt  . 

Let : ( )pF J R R R  P be a multi-valued mapping. Then for only measurable function : ( , )x C J R , let 
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    ( )( ) , ( , ) | ( , ) , ( , ),   . .  .FS x v M J R v t F t x t a e t J       M (2.1) 

and 

    1 1
( )( ) , ( , ) | ( , ) , ( , ),   . .  .(2.2)FS x v L J R v t F t x t a e t J       M This is our set of selection 

functions for F on J × R ×  .  

The integral of the random multi-valued function F is defined as 

  1

0 0

, ( , ), ( , ) : ( )( )
t t

FF s x s ds v s ds v S x   
  

  
  

  . 

Furthermore, if the integral  
0

, ( , ),

t

F s x s   ds exists for every measurable function : ( , )x C J R , then  the 

multi-valued mapping F is Lebesgue integrable on J. 

 I need the following definitions in the sequel. 

Definition 2.1 A multi-valued mapping : ( )cpF J R R P  is called strong random Carathe’odory if for each 

 , 

(i) ( , ) ( , , )t F t x   is jointly measurable for each ,x y R , and 

(ii) ( , , )x F t x   is Hausdorff continuous almost everywhere for t J . 

Again, a strong random Carathe’odory multi-valued function F is called strong 
1

L -Carathe’odory if 

(iii)For each real number r > 0 there exists a measurable function 
1

: ( , )rh L J R  such that for each   

 ( , , ) sup | |: ( , , ) ( , )rF t x u u F t x h t    
P

 a. e.  t J  

 for all x R  with | |   x r . 

I quote  the following lemmas which are well-known in the literature. 

Lemma 2.1 (Lasota and Opial [7]) Let E be a Banach space. If dim( )E    and : ( )cpF J E E P  is strong 

1
L -Carathe’odory, then 

1
( )( ) 0FS x    for each .x E  

Lemma 2.2 (Carathe’odory theroem [5]) Let E be a Banach space. If : ( )cpF J E E P  is strong Carathe’odory, then the 

multi-valued mapping  ( , ) , ( )t x F t x t  is jointly measurable for any measurable E-valued function x on J. 

 

EXISTENCE RESULT 
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   Let ( , )XM  denote the space of all measurable X-valued functions defined on  . Define functions 

1 2
, : ( , )M Md d X R


 M  by 

1

0

( ) ( )
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1 ( ) ( )

T
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x y
d x y d
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and     
2
( , )  sup ( ) :Md x y ess x    . 

Then ( , )XM  is a metric space with respect to the above metrics 
1Md  and 

2Md . 

Definition 3.1 A multi-valued random operator : ( )clQ X X  P  is called multi-valued random contraction if there is a 

measurable function :k R


  such that 

          ( ) , ( ) ( )Hd Q x Q y k x y        

for all ,x y X  and  , where 0 ( ) 1k    on . 

I need the following fixed-point theorem for multi-valued random operator is as 

Theorem 3.1 (Nowak [8]) Let ( , , ) A  be a complete  -finite measure space, X a separable banach space, and let 

: ( )clQ X X  P  be a random multi-valued contraction. Then ( )Q   has a random fixed point 

I use the following result which come from the classical K. Kuratowskii and C. Ryll-Nardzeuskii selection theorem[6]. 

Proposition 3.1 Let ( , ) A  be a measurable space and let X be a separable Banach space. Let : ( )clQ X P  be a 

measurable multi-valued operator and let : X   be a measurable selector. Then for 0   there exists a measurable 

selector   of  ( )Q y  such that 

                                 ( ), ( ) ( ), ( )d d Q       y  ,    for all  . 

I consider the following set of hypotheses  for proving  the main result. 

( 1A )F defines a multi-valued mapping : ( )clF J R R  P . 

( 2A )F is strong random Carathe’odory 

( 3A ) ( , ) ( , , )t F t x   is jointly measurable for each x R . 

( 4A )There exists a measurable function 
1

: ( , )L J R  satisfying for each  ,   

                    ( , , ), ( , , ) ( , )Hd F t x F t y t x y            for all ,x y R . 

            ( 5A ) F  is integrally bounded on J R  . 
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 MAIN EXISTENCE RESULT 

Theorem 3.4.2 Assume that the hypotheses 1 5( ) ( )A A hold. Further, if 1( ) 1
L

   for all  , then the RDI (1.1) 

has a random solution defined on J  . 

Proof: RDI (1.1) s equivalent to the RII 

                                  0

0

( , ) ( ) , ( , ), ,

t

x t q F s x s ds         t J .             (3.1) 

Set  , ( , )X C J R M and define the multi-valued operator : ( , ) ( )pQ C J R X P  by 
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( ) ( ) ( ) , ( , ), ,      

( ) ( )( )                    (3.2)

t

F

Q x t q F s x s ds t J

S x t

   



  





K

 

 Where    1 1
: , ( , ) , ( , )L J R C J R  K M M is a continuous operator defined by                     

0

0

( , ) ( ) ( , ) .

t

v t q v s ds    K                                               (3.3) 

 I show that ( )Q   is a multi-valued random operator on X. First, I show that the multi-valued map 
1

( , ) ( )( )Fx S x   is 

measurable. Let  1
, ( , )f L J R M  be arbitrary. Then 

   1
1 1

0

, ( )( ) inf ( ) ( ) : ( )( )

inf ( , ) ( , ) : ( )( )

F FL

T

F

d f S x f h h S x

f t h t dt h S x

   

  

  

  
   

  


  

  

0

0

inf ( , ) : , ( , ),

( , ), , ( , ), .

T

T

f t z z F t x t dt

d f t F t x t dt

  

  

  







 

But by hypothesis 2( )A , the mapping   , ( ), ,F t x t    is measurable. Now the function  , ( , , )z d z F t x   is 

continuous and hence the mapping                                                             

   ( , , , ) ( , ), , ( ), ,t x f d f t F t x t                                                                       is measurable from 

1
( , )J X L J R   into .R


 Now the integral is the limit of the finite sum of measurable functions, and so, 

 1
, ( )( )Fd f S x  is measurable. As a result, the multi-valued mapping ( , ) 

1

( )( )FS    is jointly measurable. 

 Define the multi-valued map   on J X   by 
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   1

0

( , , ) ( ) ( )( ) , ( , ),

t

Ft x S x t F s x s ds      K                                                  I have shown that 

( , , )t x   is continuous in t in the Hausdorff metric on R . Let { }nt  be a sequence in J converging to .t J  Then 
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                                                   Thus the multi-valued map 

( , , )t t x   is continuous and hence, by Lemma 2.2, the map  
0

( , , ) , ( , ),

t

t x F s x s ds    is measurable. 

Again, since the sum of two measurable multi-valued functions is measurable, the map 

 0

0

( , , ) ( ) , ( , ),

t

t x q F s x s ds      

is measurable. Consequently, ( )Q   is a random multi-valued operator on X. 

I show that ( )Q   satisfies all the conditions of Theorem 3.1 on X. First, I show that Q is closed valued multi-valued random 

operator on X. Observe that the operator ( )Q   is equivalent to the composition 
1

( )FK S   of two operators on 

1
( , )L J R . To show ( )Q   has closed values, it then suffices to prove that the composition operator 

1
( )FK S   has 

closed values on [a, b]. Let [ , ]x a b  be arbitrary and  let { nv } be a sequence in 
1

( )( )FS x  converging to v in measure. 

Then, by the definition of
1

( )FS  ,  ( , ) , ( , ),nv t F t x t    a.e. for .t J  Since  , ( , ),F t x t    is closed, 

 ( , ) , ( , ),v t F t x t    a.e. for .t J  Hence, 
1

( )( )Fv S x . As a result, 
1

( )FS  (x) is closed set in
1
( , )L J R  
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for each . From the continuity of K, it follows that  1
( )( )FS xK  is a closed set in X. Therefore, ( )Q   is a 

closed-valued multi-valued operator on [a, b] for each . 

Next, I show that ( )Q   is a multi-valued random contraction on X. Let ,x y X  and let 1 ( ) .u Q x  Then there is a 

1

1 ( )Fv S x  such that 

0 1

0

( , ) ( ) ( , )

t

u t q v s ds    
 

for all t J  and  . Let 0   be given. Then for above 
1

1 ( ) ,Fv S x  by Proposition 3.1, there is a 

1

2 ( )Fv S y  such that 
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for all  . Hence, 
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1 2 1 2

0 0
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for all  . Taking supremum over t, we obtain  

11 2( ) ( ) ( ) ( ) ( )
L

u u x y T         . 

Since   is arbitrary, one has 

11 2( ) ( ) ( ) ( ) ( )
L

u u x y        

Interchanging the role of 1u  and 2u , 

  1( ) , ( ) ( ) ( ) ( )H L
d Q x Q y x y       
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for all ,   and  .x y X    This shows that ( )Q   is a multi-valued random contraction on X with the contraction 

constant 1( ) ( ) 1
L

     for all  . Hence ( )Q   has a random fixed point and the set of all random fixed 

point is closed set in X. This further implies that the RDI (1.1) has a random solution and the set of all random solutions is as 

closed subset of X defined on J  . This completes the proof. 
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