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Abstract: In this paper, | prove the existence of random solution for the first order initial value problem of non-convex random differential
inclusion through random fixed point theory.

Keywords: Random differential inclusion, Carathe’odory condition.

AMS Mathematics Subject Classifications: 60H25, 47H10.

STATEMENT OF THE PROBLEM

Let (Q,A ) ,u) be a complete O -finite measure space and let R be the real line. Let Pp (R) denote the class of all non-empty
subsets of R with property p. Given a closed and bounded interval J= [O,T] and given a measurable

functionq, - Q) — R, consider the first order random differential inclusion (in short RDI),

X'(t,w)eF(t,x(t,w),w) ae tel
(1.1)

X(0, ) = gy (@)

forall@ € Q, where F:J xRxQ—P (R).

By a random solution of the RDI (1.1) on J X € , means a measurable function X : {2 —> ACl(J , R) satisfying for each
weQ, X'(t,w) =V(t,w)for some measurablev: Q2 —> L*(J,R)such that V(t,w)eF (t, x(t,a)),a)) a.e.

t e J, where AC™(J, R) s the space of continuous real-valued functions whose first derivative is absolutely continuous on J.

When the right hand side multi-valued function is not convex-valued, the geometrical or algebraic multi-valued fixed-point theory
is used for proving the existence theorem under certain Lipschitz and monotonicity conditions of multi-valued functions. Here, |
will prove the existence result for non-convex case of first order random differential inclusion.

AUXILIARY RESULTS

Let M (J, R) denote the class of real-valued measurable functions on J and let C(J, R) denote the space of continuous real-

. 1 . . . .
valued functions on J. Let L"(J, R) denote the Banach space of Lebesgue integrable functions on J with norm || - ||Ll defined

)
by || x|, = [ x(t)dt.
0

Let F: I xRxRxQ— Pp (R) be a multi-valued mapping. Then for only measurable function X : QQ — C(J,R), let
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Se(@)(X)={veM (QM(J,R))|v(t,0) e F(t,x(t,0),w) ae tel}.(21)
and
8,1: (@)(X) = {V eM (Q, LM(J, R)) |v(t,w) e F (t, X(t, ®), a)) ae teld }.(2.2) This is our set of selection

functions for FonJx R x Q).

The integral of the random multi-valued function F is defined as
t t
[F(s,x(s,0),w)ds = [v(s,@)ds:V € St (w)(X) -
0 0

t
Furthermore, if the integral JF(S, X(S,a)),a)) ds exists for every measurable function X :€2 — C(J,R), then the

0
multi-valued mapping F is Lebesgue integrable on J.

I need the following definitions in the sequel.

Definition 2.1 A multi-valued mapping F :J % RXQ—)PCp(R) is called strong random Carathe’odory if for each
w e,

(i) (t, @) > F(t, X, @) is jointly measurable for each X, ¥ € R, and

(i) X = F (t, X, ®) is Hausdorff continuous almost everywhere for t € J .

. . . . 1 .
Again, a strong random Carathe’odory multi-valued function F is called strong L -Carathe’odory if

(iii)For each real number r > 0 there exists a measurable function N, : €2 —> Ll(J , R) such that for each @ € Q
|F(t,x, )|, =sup{lul:ueF(t,x,0)} <h (t,®) ae tel

forallX € R with | X| < r.
I quote the following lemmas which are well-known in the literature.
Lemma 2.1 (Lasota and Opial [7]) Let E be a Banach space. If dIM(E) <o and F:JXExQ — Pcp(E) is strong

L -carathe ‘odory, then 8,1: (w)(X) # 0 foreach X € E.

Lemma 2.2 (Carathe’odory theroem [5]) Let E be a Banach space. If F:J xE — Pcp (E) is strong Carathe ‘odory, then the

multi-valued mapping (t, X) —F ('[, X(t)) is jointly measurable for any measurable E-valued function x on J.

EXISTENCE RESULT
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Let M (Q,X) denote the space of all measurable X-valued functions defined on €. Define functions
. +
Ay, Ay, *M (Q,X) >R by

T

T (@) - y()|
dy, (X, y) = .c[]_+ [X(0) — y(@)|

and dy, (x,y) =ess sup{|x(w)|: 0 Q.
Then M (Q, X) is a metric space with respect to the above metrics 0 M, and d M, -

Definition 3.1 A multi-valued random operator Q : Q2x X — Pcl (X) is called multi-valued random contraction if there is a

measurable function K : QQ — R+ such that

dy, (Q(@)x,Q(@)y) <k(w)|x~VY|
forall X,y € X and @€ Q, where 0 < k(w) <1onQ2.

I need the following fixed-point theorem for multi-valued random operator is as

Theorem 3.1 (Nowak [8]) Let (Q,A,,u) be a complete O -finite measure space, X a separable banach space, and let
Q:Qx X — P (X)) be arandom multi-valued contraction. Then Q (@) has a random fixed point

I use the following result which come from the classical K. Kuratowskii and C. Ryll-Nardzeuskii selection theorem[6].

Proposition 3.1 Let (£2,AA) be a measurable space and let X be a separable Banach space. Let Q:Q — P (X) bea
measurable multi-valued operator and let ¢: {2 — X be a measurable selector. Then for & > O there exists a measurable
selector Y of Q(a)) such that

d(g(w)y (@) <d(P(®),Q(w))+& . foral weQ.

I consider the following set of hypotheses for proving the main result.

(A )F defines a multi-valued mapping F : J x RxQ — P, (R).

( A, )F is strong random Carathe’odory

(A;) (t,) = F(t, X, ) is jointly measurable for each X € R .

( A, )There exists a measurable function ¢ 1 Q) —> L*(J, R) satisfying for each @ € 2,
dy (F(t.x,0),Ft,y,0)<((tw)|x—-y| foraixyeR.

(Ag) F isintegrally bounded on J x Rx €Y .
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MAIN EXISTENCE RESULT

Theorem 3.4.2 Assume that the hypotheses (A ) — (Ag) hold. Further, if |[((c)| 1 <1 for all @ € €2, then the RDI (1.1)
has a random solution defined on J X (.

Proof: RDI (1.1) s equivalent to the RII
t
X(t, ) € Gy (@) + [ F (5, X(s, ), w)ds, €. (3.1)
0

set X =M (Q,C(J : R))and define the multi-valued operator Q : QxC(J,R) — Pp(X) by
t
Q(@)X(t) = y(@) + [ F (5,X(s, ), )ds, te
0

= (Ko S¢(@)) (0)() (32)
Where K - M (Q’ L1(J, R)) S M (Q’Cl(J ' R)) is a continuous operator defined by

Kv(t, ) =gy (@) + jt'v(s, w)ds. (3.3)
0

| show that Q(a)) is a multi-valued random operator on X. First, I show that the multi-valued map (a), X) = 8,1: (a))(X) is
measurable. Let T € M (Q, Ll(J : R)) be arbitrary. Then

d ( f,st (a))(x)) =inf {H f(w) —h(w)|,.:heSt (a))(x)}
—inf {} f (t,w) —h(t,w)|dt :h e S, (a))(x)}

inf {|f(t,w)—z|:z e F (t,x(t, ®), )} dt

Il Il

d( f(t,@),F (t,x(t,®),))dt.

But by hypothesis (AZ) , the mapping F ('[, X(?](t), a)) , a)) is measurable. Now the function Z > d (Z, F(t, X, a))) is
continuous and hence the mapping
(t, %, 0, T) > d (f(t, @), F(t,x(7(1), ), ®)) is measurable from

Ix X xQxL}J,R) into R. Now the integral is the limit of the finite sum of measurable functions, and so,

d ( f ,5,1: (a))(X)) is measurable. As a result, the multi-valued mapping (-, ) — S,lz(.) () is jointly measurable.

Define the multi-valued map @ on J x X xQ by
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o, X, w) = (K oSt (a)))(x)(t) = j F (s, X(s, @), w)ds I have shown that
0

¢('[, X, a)) is continuous in t in the Hausdorff metricon R . Let {'[n} be a sequence in J converging to t € J. Then

dH (¢(tn ’ X’a))’¢(t! X’a)))

=d, U F (s, x(s,w), a))ds,.t[ F (s, x(s, a)),a))dsj
=d,, [J'X[O'tn](s)l: (t,x(s, ), w)ds,

j.X[Ovt](s)F (s,X(s, ), ®) ds}
J

= HX[OIH] (s) — X0 (s)w F(s.x(s, @), )|, ds

=ﬂx[0,tn](s) —X[O,t](s)‘HF (s.x(s, @), @), ds
J

:HX[O,I”] (s) — X0 (S)‘ 7(s, @)y (|x(s,®)|)ds Thus the multi-valued map
J

ZHX[O,tn](S) - X[O,t](s)‘ 7 (s, w)y (Hx(a))H)dS

J

—>0 as n-— oo.
t

t > @(t, X, ®) is continuous and hence, by Lemma 2.2, the map (t, X, @) > I F (S, X(s, ), a)) ds is measurable.
0

Again, since the sum of two measurable multi-valued functions is measurable, the map
t
(t, X, @) > Go (@) + [ F (3, X(s, ), w)ds
0

is measurable. Consequently, Q(a)) is a random multi-valued operator on X.

I show thatQ(a)) satisfies all the conditions of Theorem 3.1 on X. First, | show that Q is closed valued multi-valued random
operator on X. Observe that the operator Q(a)) is equivalent to the composition K OS|1: (a)) of two operators on
Qx Ll(J ,R). To show Q(@) has closed values, it then suffices to prove that the composition operator K o 5,1: (@) has
closed values on [a, b]. Let X € [a, b] be arbitrary and let {V, } be a sequence in S,1: (a))(X) converging to v in measure.
Then, by the definition ofS,1: (@), v,(t,w) e F(t,X(t,a)),a)) ae. for t€J. Since F(t, X(t,a)),a)) is closed,

v(t,w) e F (t, X(t, ), a)) ae for t € J. Hence, V€ S,lz(w) (X) . As a result, 5,1: (@) () is closed set in L"(J, R)
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- . 1 . . .
for each @ € Q. From the continuity of K, it follows that (K o SF (a))(X)) is a closed set in X. Therefore, Q(a)) is a

closed-valued multi-valued operator on [a, b] for each @ € €2.

Next, I show that Q(a)) is a multi-valued random contraction on X. Let X,y € X and let U, € Q(a))X Then there is a

v, € 8,1: (@)X such that
t
u(t, w) = gy (@) + [ V4 (s, w)ds
0

for all tedJ and @€ Q. Let £ >0 be given. Then for above VleS,1: (@)X, by Proposition 3.1, there is a

Vv, € 8,1: (@)Y such that
Vv, (t, @) =V, (t, )| < d (v (t, @), SE (@) y (1) ) + &
=d (vl(t,a)), F(t, y(t, a)),a))) +&

=d, (F(t,y(t,o),0),F(t,yt o),o)+¢
< E(t,a))|x(t, w) — y(t,a))| +&

</(t,w) ||X(a)) - y(a))” +&

forall @ € €. Hence,

U, (t, @) —u, (t,@)| < _t[vl(t, @) —V, (t, w)ds + gjds

< jé(s, o) x(@) — y(w)||ds + 8} ds
0 0
<@ Ix(@) ~ y(@)|+ T

for all @ € €. Taking supremum over t, we obtain

|uy (@) —uy (@) < | 6(@)] 2 | X(0) - y(@)| + £T .

Since g is arbitrary, one has
|us(@) = s (@) < [ @) 1 [x(@) = y(@)

Interchanging the role of U; andU,,

dy, (Q@)x,Q(@)y) <[{(®)| 1 [X(e) - y(w)|
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forall X,y € X and @ € Q. This shows that Q(a)) is a multi-valued random contraction on X with the contraction

constant a(a)) = Hﬁ(a))HLl <1 forall @€ Hence Q(a)) has a random fixed point and the set of all random fixed

point is closed set in X. This further implies that the RDI (1.1) has a random solution and the set of all random solutions is as
closed subset of X defined on J X €. This completes the proof.
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