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Abstract: Terminal Zagreb eccentricity indices were proposed analogously to Zagreb eccentricity indices. For a connected graph, the first 

Terminal Zagreb eccentricity index is defined as the sum of the squares of the eccentricities of the terminal vertices, and the second Zagreb 

eccentricity index is defined as the sum of the products of the eccentricities of all pairs of terminal vertices. In this paper we obtain results for the 

terminal Zagreb eccentricity indices of line graphs. 
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1.  INTRODUCTION 

Let G be a connected graph with vertex set V (G) = {v1, v2, . . . ,vn} and edge set E(G) = {e1, e2, . . . , em}. The degree of a 

vertex v in G is the number of edges incident to it and is denoted by d(v) or degG(v). If degree of v is one then v is called a pendent 

vertex or terminal vertex. An edge e = uv of a graph G is called a pendent edge if d(u) = 1 or d(v) = 1. The line graph of a 

connected graph G, denoted by L(G) is the graph whose vertices are the edges of G and two vertices of L(G) are adjacent 

whenever the corresponding edges of G are adjacent. The distance between the vertices vi and vj in G is equal to the length of a 

shortest path joining them and is denoted by d(vi, vj /G). For a vertex vi its eccentricity, ei is the largest distance from vi to any 

other vertices of G. 

The first and the second Zagreb eccentricity indices [6, 9] are defined as follows,  
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Analogously to Zagreb eccentricity indices, defining the first and the second Terminal Zagreb eccentricity indices as,  
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Where, VT (G) = {v1, v1, . . ., vk} is the set of all pendent vertices of G.  

 

Defining the set D2(G) as, 

         D2(G) = {v | degG(v) = 2 and one neighbour of v is pendent}. 

 

 

2. EXISTING RESULTS 

Many researchers have studied and obtained several results on Zagreb eccentricity indices of various graphs [1, 2, 3, 4, 5, 

7, 10] 

 
Recently H. S. Ramane et. al. [8] have obtained expressions for terminal weiner index of Line graphs  
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Theorem 2.1 [8]: Let G be a connected graph with n ≥ 4 vertices and let D2(G) ={v1, v2, . . . , vq}. Then 
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Corollary 2.2 [8]: TW(L(G)) = 0 if and only if the graph G satisfies one of the following conditions. (i) G has no edge e = uv 

where degG(u) = 1 and degG(v) = 2. (ii) G has only one edge e = uv where degG(u) = 1 and degG(v) = 2 (iii) G has no pendent 

vertices. (iv) G has only one pendent vertex. (v) G has no vertex of degree 2. 

 

Theorem 2.3 [8]: Let G be a connected graph with n ≥ 4 vertices and G′ be the graph obtained from G by removing pendent 

vertices of G. If p is the number of pendent vertices of G′, then 
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Equality holds if and only if (i) G = K1, n−1 or (ii) G has no Bridge e such that one of the component of G − e is K1, s , s ≥ 2 and G ≠ 

K1, n−1. 

 

Corollary 2.4 [8]: Let G be a connected graph with n ≥ 4 vertices and G′ be the graph obtained from G by removing pendent 

vertices. Let p be the number of pendent vertices of G′. If all pendent edges of G are mutually independent, then 
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3. TERMINAL ZAGREB ECCENTRICITY INDICES OF LINE GRAPHS 

 

Theorem 3.1: Let G be a connected graph with n ≥ 4 vertices and D2(G) ={v1, v2, . . . , vq}. Then the terminal Zagreb first and 

second eccentricity index of line graph of G is, 
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Proof: Let G be a connected graph with n ≥ 4 vertices and D2(G) ={v1, v2, . . . , vq}. 

Let Ek ={e1, e2, . . . , ek} be the set of pendent edges of G. We know that if ei = uv Eq ,    

      where Eq  Ek then  degG(u) = 1 and degG(v) = 2, i =1,2,…,q. 

Consider two edges ei and ej with ei = uv Eq and ej = vjw Eq. 

Where,   degG(u) = 1 = degG(w)   and degG(v) = degG(vj), i = 1, 2, …, q.     

Therefore ei and ej are the pendent vertices of L(G) 

Therefore, 
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Corollary 3.2: T[E1(L(G))] = T[E2(L(G))] =0 if and only if the graph G satisfies one of the following conditions. i) G has no edge 

e = uv where degG(u)= 1 and degG(v)= 2. (ii) G has only one edge e = uv where degG(u) = 1 and degG(v)= 2. (iii) G has only one 

pendent vertex. (iv) G has no pendent vertices. (v) G has no vertex of degree 2.                              

 

Theorem 3.3: Let G be a connected graph with n ≥ 4 vertices and G′ be the graph obtained from G by removing pendent vertices 

of G. If p is the number of pendent vertices of G′, then 
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Equality holds if and only if (i) G = k1,n–1 or (ii) G has no bridge e such that one of the component of G–e  is k1,s , s ≥ 2 and G ≠ k1, 

n–1 . 

 

Proof: Let D2(G) ={v1, v2, v3,…, vq}. The number of pendent vertices of G′
 
is at least q. If p is the number of pendent vertices in 

G′
 
then p ≥ q. from Theorem 3.1, 
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Therefore, 
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For equality we consider the following cases: 

Case I: for G = K1, n-1obviously equality holds . 

Case II: If G ≠ K1, n-1and if there is an edge in G such that one of the component of G–e is K1, s  , s ≥ 2 then q = p. 

Therefore 
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i.e., T[E1(L(G))] = T[E1(L(G′))] and T[E2(L(G))] = T[E2(L(G′))] 

 

Conversely, let G contains a bridge e such that one of the component of G –e is K1, s , s ≥ 2  

Therefore p > q. 
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From Theorem 3.1 
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By Eq. (3.1),  q < p 

T[E1(L(G))] < T[E1(L(G′))] and T[E2(L(G))] < T[E2(L(G′))] 

Which is a contradiction. 

This completes the proof.                                                                                                                                                     □ 

 

 

Corollary 3.4: Let G be a connected graph with n ≥ 4 vertices and G′ be the graph obtained from G by removing pendent vertices 

of G. If p is the number of pendent vertices of G′. If all pendent edges of G are mutually independent, then 

T[E1(L(G))] = T[E1(G′)] and T[E2(L(G))] = T[E2(G′)] 

 

Proof: Follows from the equality part of Theorem 3.3.                                                                                                         □ 

 

 

4. Terminal Zagreb eccentricity index of line graphs of some graphs 

 

Let the vertices of G be v1, v2, …, vn then G
+ 

is the graph obtained from G by adding n new vertices v′1, v′2, …, v′n  and 

joining v′i to vi an edge, i = 1, 2, …,n. 

 

Theorem 4.1: Let G be a connected graph with k pendent vertices, then 
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Proof: If G has n vertices of which k are pendent vertices, then G
 +  

has n pendent edges of which k pendent edges are such that for 

each ei = uv , i =1, 2, …, k . 

1)(deg u
G

and 2)(deg v
G
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L(G
+
) has k pendent vertices. 

We know that pendent vertices of G
+
 are mutually independent, from Corollary 3.4, 
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Theorem 4.2: )]([))](([ 111 nn KETSLET and )]([))](([ 122 nn KETSLET . 

Proof: Star graph Sn  has n – 1 pendent vertices nS  has n pendent vertices and L( nS ) has n – 1 pendent vertices. Therefore 

terminal Zagreb eccentric indices of L( nS ) is same as the terminal Zagreb eccentric indices of 1nK .
 

Therefore, the result follows.                                                                                                                                                  □ 

 

Theorem 4.3: Let G be a connected graph with k pendent vertices and )( 1tt HLH , t = 1, 2, … Where H0 = G and H1 = L(G
+
) 

then, 
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Proof: As G has k pendent vertices from Theorem 4.1, the graph Ht has k pendent vertices, t = 1, 2, …  
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