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INTRODUCTION  

Denote by U the open unit disc of the complex plane, }.1:{ zCzU Let  )(U
 
be the space of analytic functions 

inU . For CaNn ,  we define: 
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Since we use the terms subordination and superordination, we review here those definition. Let ).(, Ugf  we say that the 

function f is subordinate to g , or the function g is superordinate to f , if there exists  a Schwarz function ,w  analytic in U , with 

0)0(w  and 1)(zw , for all ,Uz such that )),(()( zwgzf for .Uz  In such a case we write gf  . 

Furthermore, if the function g is univalent inU , then we have the following equivalence (See [6] and [13]): 

       
)()( zgzf   if and only if )0()0( gf   and ).()( UgUf

 

Let CUC 2: and )(zh  be univalent inU .If )(zp is analytic in U and satisfies the first-order  

differential subordination: 
 

(1.1)            ),());(),(( ' zhzzzpzp   
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then )(zp is a solution of the differential subordination (1.1). The univalent function )(zq is called a dominant of the solutions 

of the differential subordination (1.1) if )()( zqzp  for all )(zp  satisfying (1.1). A univalent dominant )(
~

zq that satisfies 

)()(
~

zqzq  for all dominants of (1.1) is called the best dominant. If )(zp and ));(),(( ' zzzpzp are univalent functions in 

U and if )(zp satisfies the first-order superordination  

(1.2)    ),);(),(()( ' zzzpzpzh   

then )(zp is called to be a solution of the differential superordination (1.2). A function )(Uq is called a subordinant of the 

solutions of the differential superordination (1.2) if )()( zpzq  for all the functions )(zp satisfying (1.2). A univalent 

subordinant )(
~

zq that satisfies )()(
~

zqzq  for all of the subordinants of (1.2) is said to be the best subordinant. Using the 

results of Miller and Mocanu [14], Bulboaca [5, 6] considered certain classes of first order differential superordinations. Ali et. al. 

[2], have used the results of Bulboaca [6] to obtain sufficient conditions for normalised analytic functions to satisfy 
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where )(1 zq and )(2 zq are given univalent normalized functions in .U  

A new generalized derivative of a function f is defined in [18] and is as follows: 

DEFINITION 1.1: For 0},0{, 0 NNmAf and a real number with ,0  a new generalized 

multiplier transformation, denoted by
mI ,

, is defined by the following infinite series: 
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It follows from (1.3) that  
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Remark 1.2 i) ,1),()(1, zfIzfI mm
 was defined in [8] and [9] (but considered for 0 ) and 

,0,1),()( ,1 lzfIzfI m

l

m

l was defined in [7] (but studied for 0,0l ), ii) ),()(,1 zfDzfI mm
 0  

was due to Al-Oboudi [1], iii) )()(1 zfDzfD mm
was introduced by Salagean [17] and was considered for 0m in [4], and 

iv) )(1 zfI m
was investigated by Uralegaddi and Somanath [19].  
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 We now define a new generalized integral operator ),(, zfJ m Azf )( as follows: 
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where
 

}0{0 NNm , 0 and a real number with 0 . 

          We see that for ,)( Azf we have 

(1.5)                ,,)(
2

, Uzza
k

zzfJ k

k

m

k

m
 

where
 
 }0{0 NNm , 0 and a real number with 0 .  

           From (1.5), it is easy to verify that 

(1.6)               .))(()()()( '1

,

1
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Remark 1.3 i) )()()( 11,1 zfLzfLzfJ mmm
(See [11, 12]) ii) 0),()()(,1 zfLzfJ mm

(See [15]) and iii) 

.1),()(1, zfJzfJ mm
 
 

 In this paper we will determine some properties on admissible functions defined with a new generalized differential operator and 

also with a new generalized integral operator. 

PRELIMINARIES 
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In order to prove our results, we need the following definition and lemmas. 

Definition 2.1 ([14]) we denote by Q, the set of all functions q that are analytic and injective on U \ )(qE , where 

})(lim:{)( zqUqE
z

and are such that 0)('q for U \ ).(qE  

Lemma 2.2([10]) Let )(zq  be univalent in U , }0{\CC  and suppose that  

.,
1

Re,0max
)('

)(''
1Re Uz

zq

zzq
 If )(zp is analytic inU , with )0()0( qp  and  

)(')()(')( zzqzqzzpzp  , then )()( zqzp  , and )(zq is the best dominant. 

Lemma 2.3 ([5]) Let )(zq be convex inU with aq )0( and ,C .0)Re( If  ]1,[)( azp  and  )(')( zzpzp  is 

univalent in U , then )(')()(')( zzpzpzzqzq  , implies  

)()( zpzq  and )(zq is the best subordinant. 

MAIN RESULTS 

Unless otherwise mentioned, we shall assume in the remainder of the paper that UzNNm },0{0 and the powers are 

understood as principle values. 

Theorem 3.1 Let ,0,,0, CAf a real number such that .0  Let the function q be univalent in 

U and suppose that it satisfies the condition 
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 , and )(zq is the best dominant. 

Proof. We define the function 

(3.3)  
z

zfI
zp

m )(
)(

,
. 

By finding the logarithmic derivative of (3.3) and using the identity (1.4), we obtain 
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(3.4) )(')( zzpzp .
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From (3.1), (3.2) and (3.4), we get 

).(')()(')( zzqzqzzpzp   

We apply now Lemma 2.2 with to obtain the conclusion of our theorem. 

Remark 3.2 i) Taking 1l  in Theorem 3.1, we obtain Theorem 1 of Aouf et.al. [3]  

(Considered for ).0l but our result hold true for .1l ii) Putting 1  in Theorem 3.1, we get Theorem 3.1 of 

Raducanu et.al. [16]. 

 

For 1 in Theorem 3.1, we get the following corollary. 

Corollary 3.3 Let ,,0, CAf a real number such that .1  Let the function q be univalent in U and 

suppose that it satisfies the condition 
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 , and )(zq is the best dominant. 

 

 We obtain the following result from Theorem 3.1, by taking .0m  

 

Corollary 3.4 Let ,0,,0, CAf a real number such that .0  Let the function q be univalent in 

U and suppose that it satisfies the condition 
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  ),(')();,,,(2 zzqzqz   

then 

  )(
)(

zq
z
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 , and )(zq is the best dominant. 

 We consider a particular convex function ,
1

1
)(

Bz

Az
zq to give the following application of Theorem 3.1. 

  

Corollary 3.5 Let BACBA ,,, such that ,0,,0,1 CB a real number such that 0  and 

suppose that Re,0max
1
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Re
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where );,,,,( zm is given by (3.1), then  
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is the best dominant. 

 

In a manner similar to that of Theorem 3.1, we can easily prove the following theorem, using the identity (1.6). 

Theorem 3.6 Let ,0,,0, CAf a real number such that .0  Let the function q be univalent in 

U and suppose that it satisfies the condition 
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 , and )(zq is the best dominant. 

For 1 in Theorem 3.6, we get the following corollary. 

Corollary 3.7 Let ,,0, CAf a real number such that .1  Let the function q be univalent in U and 

suppose that it satisfies the condition 
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Let 
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 The next theorem is a result concerning a differential superordination. 

 

Theorem 3.8 Let q be convex in U with Cq ,0,1)0(  with ,0,0)Re( and  a real number such that 

.0  If Azf )( such that ]1,1[
)(,

z

zfI m

Q, );,,,,( zm is univalent inU and satisfies the 

superordination  

(3.9)  )(')( zzqzq );,,,,( zm , 

where );,,,,( zm is given by (3.1), then  

z

zfI
zq

m )(
)(

,
 , and )(zq is the best subordinant.  

Proof. Let )(zp be given by (3.3) and proceeding as in the proof of Theorem 3.1, (3.9) becomes 

  ).(')()(')( zzpzpzzqzq     

The proof follows by an application of Lemma 2.3. 

 

We get the following corollary on putting 1 in Theorem 3.8. 

Corollary 3.9 Let q be convex in U with Cq ,0,1)0( with ,0)Re( and  a real number such that 1 If 

Azf )( such that ]1,1[
)(

z

zfI m

Q, );,,,(1 zm is univalent inU and satisfies the superordination 

)(')( zzqzq );,,,(1 zm ,where   );,,,(1 zm is given by (3.5), then 
z

zfI
zq

m )(
)(  , and )(zq is 

the best subordinant. 
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We obtain the following result from Theorem 3.8, by putting .0m  

Corollary 3.10 Let the function q be convex inU with ,0,,0,1)0( Cq a real number such that .0  

If Azf )( such that ]1,1[
)(

z

zfI m

Q, );,,,(2 zm is 

univalent inU and satisfies the superordination ),(')();,,,(2 zzqzqz  where );,,,(2 zm is given by 

(3.6), then
z

zf
zq

)(
)(  , and )(zq is the best subordinant. 

 

In a manner similar to that of Theorem 3.8, we can easily prove the following theorem. 

Theorem 3.10 Let q be convex in U with Cq ,0,1)0( with ,0,0)Re( and a real number such that 

.0  If Azf )(  such that ]1,1[
)(1

,

z

zfJ m

Q, );,,,,( zm   is univalent inU and satisfies the 

superordination  

  )(')( zzqzq );,,,,( zm , 

where );,,,,( zm is given by (3.7), then  

z

zfJ
zq

m )(
)(

1

,
 , and )(zq is the best subordinant. 

  

 Taking 1 in Theorem 3.10, we get the following corollary. 

Corollary 3.11 Let q be convex in U with Cq ,0,1)0( with ,0)Re( and  a real  

number such that 1 If Azf )( such that ]1,1[
)(1

z

zfJ m

Q, );,,,(1 zm is univalent inU and 

satisfies the superordination )(')( zzqzq );,,,(1 zm , where   );,,,(1 zm is given by (3.8), then 

z

zfJ
zq

m )(
)(

1

 , and )(zq is the best subordinant.  

 

 

Combining the results of Theorem 3.1 and Theorem 3.8, we state the following sandwich result. 

 



S.R. SWAMY et al, Journal of Global Research in Mathematical Archives, 1(2), February 2013, 76-85 

 

 

JGRMA 2013, All Rights Reserved    

Theorem 3.12 Let 1q and 2q be convex in U with Cqq ,0,1)0()0( 21 with 0)Re( ,   ,0 and a real 

number such that .0 If Azf )( such that ]1,1[
)(,

z

zfI m

Q, 

);,,,,( zm is univalent inU and satisfies the superordination  

  )()( '

11 zzqzq );,,,,( zm  )()( '

22 zzqzq  

where );,,,,( zm is given by (3.1), then )(
)(

)( 2

,

1 zq
z

zfI
zq

m

 , )(1 zq  and )(2 zq  are the best 

subordinant and the best dominant respectively.  

 

 Combining the results of Theorem 3.6 and Theorem 3.10, we obtain the following sandwich result. 

Theorem 3.13 Let 1q and 2q be convex in U with Cqq ,0,1)0()0( 21 with 0)Re( ,   ,0 and  a real 

number such that .0 If Azf )( such that ]1,1[
)(1

,

z

zfJ m

Q, );,,,,( zm is univalent inU and 

satisfies the superordination  

  )()( '

11 zzqzq );,,,,( zm  )()( '

22 zzqzq  

where );,,,,( zm is given by (3.7), then )(
)(

)( 2

1

,

1 zq
z

zfJ
zq

m

 , )(1 zq   and )(2 zq  are the best 

subordinant and the best dominant respectively 

 

Remark 3.14 Combining Corollaries 3.3, 3.9 and 3.7, 3.11, we get the corresponding sandwich results for the operators 
mI  

and
1mJ , respectively. 

Remark 3.15 Putting 1l  Theorem 3.8 and Theorem 3.12, we obtain Theorem 3 and Theorem 5, respectively, of 

Aouf et.al. [3] (Considered for ).0l But our results hold true for .1l  

Remark 3.16 For 1  in Theorem 3.8 and Theorem 3.12, we get Theorem 3.6 and Theorem 3.9, respectively, of Raducanu 

et.al. [16].  

Remark 3.17 Taking 1  in Corollary 3.4 and Corollary 3.5, we obtain Corollary 3.2 and Corollary 3.5, respectively, of 

Raducanu et.al. [16]. 
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