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INTRODUCTION

Denote by U the open unit disc of the complex plane, U ={z €C :|Z| <1}.Let H(U) be the space of analytic functions

inU . For n e N,a € C we define:
H[a,n]={f e HU): f(z)=a+a,z"+a,,2"" +.}, zeU,

A={f eHU): f(z)=z+a,z* +a,2° +..,},zeU.

For two functions f(z)=2z+ Zakzk andg(z)=z+ Zbkzk , the Hadamard product (or convolution) of f and Qis
k=2 k=2

defined by (f * g)(2) = 2+ a,b, 2% = (g * 1)(2).

k=2

Since we use the terms subordination and superordination, we review here those definition. Let f,g € H(U). we say that the

function f is subordinate to g, or the function g is superordinate to f , if there exists a Schwarz function W, analytic in U , with
w(0) =0 and |W(Z)|<1, for all zeU,such that f(z)=g(w(z)),for z€U. In such a case we write f <g.

Furthermore, if the function g is univalent inU , then we have the following equivalence (See [6] and [13]):
f(z) <g(z) ifandonlyif f(0)=g(0) and f(U) < gU).

Let @ :C?xU — C and h(z) be univalent inU .If p(z) isanalytic in U and satisfies the first-order

differential subordination:

(1.1) o(p(2),2p (2);2) < h(2),
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then P(z) is a solution of the differential subordination (1.1). The univalent function q(z)is called a dominant of the solutions
of the differential subordination (1.1) if p(z) < q(z)for all p(z) satisfying (1.1). A univalent dominant q(Z) that satisfies

0(z) < q(z) for all dominants of (1.1) is called the best dominant. If p(z) and @(p(2), zp (2); Z) are univalent functions in

U and if p(z) satisfies the first-order superordination

(1.2) h(z) < ¢(p(2), 2p (2); 2),

then P(2) is called to be a solution of the differential superordination (1.2). A function g € H(U) is called a subordinant of the

solutions of the differential superordination (1.2) if q(z) < p(z)for all the functions p(z) satisfying (1.2). A univalent

subordinant (z) that satisfies ¢(z) < q(z) for all of the subordinants of (1.2) is said to be the best subordinant. Using the

results of Miller and Mocanu [14], Bulboaca [5, 6] considered certain classes of first order differential superordinations. Ali et. al.

[2], have used the results of Bulboaca [6] to obtain sufficient conditions for normalised analytic functions to satisfy

7f '(2)
f(2)

0. (2) < <0,(2),

where @, (z)and g, (z) are given univalent normalized functions in U.

A new generalized derivative of a function f is defined in [18] and is as follows:

DEFINITION 1.1: For f e Ame N, =NuU{0}, #>0andor a real number with o+ >0, a new generalized

multiplier transformation, denoted by I:ﬁ , is defined by the following infinite series:

m S +kﬂ i k
(1.3) 1), f(z)=z+ [a :)aZ.JeU.
’ 2 arp) ™

It follows from (1.3) that

(1.4) (a+,b’)|2"’;1f(z):alzﬁf(z)+ﬂz(lzﬂf(z))',

Remark 12 i) 1], f(z)=1]f(z),0>-1 was defined in [8] and [9] (but considered forcz>0) and
I, T(2) =1, T(2),1 > 1 > 0,was defined in [7] (but studied forl >0, 8>0), ii) 1], f(z) =Dy f(z), #=0
was due to Al-Oboudi [1], iii) D;" f (z) = D™ f (z) was introduced by Salagean [17] and was considered for m > Qin [4], and
iv) 1" f (z) was investigated by Uralegaddi and Somanath [19].
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We now define a new generalized integral operator J:ﬁ f(2), f(z) € Aas follows:

12,2 = 1),

+ﬂ a+/3 (
3, f(2)=3,,,f@)= (“ j ft )tz eU,

: )= (Mﬂ) {5) ft[ 3t fMdtzeU,

o) (=
J;ﬁuz):( *ﬁ]z Wft[ gt
_Jiﬂ( Zz] Ji"ﬂ(ljz]*m*Jl (— ]*f(z)
S — m — times

where me N, = N U{0}, 8 > 0and « areal number withex + 8 > 0.

We see that for f (z) € A, we have

, o a+p )
(1.5) J“’ﬁf(z)zz+k§(0{+—kﬁ) a,z",zeU,

where me N, = N U{0}, 8 > 0and o areal number withex + 8 > 0.
From (1.5), it is easy to verify that
(1.6) (a+p), ;f(2)=ad, m 5 @)+ 43, " (2)).

Remark 1.3 i)J)}f(2) =L f(z) =L"f(z)(See [11, 12]) i) I, ,f(2)=L"(B)f(2),8>0(See [15]) and iii)
Jof(2)=31(2),a>-1.

In this paper we will determine some properties on admissible functions defined with a new generalized differential operator and

also with a new generalized integral operator.

PRELIMINARIES
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In order to prove our results, we need the following definition and lemmas.

Definition 2.1 ([14]) we denote by Q, the set of all functions (that are analytic and injective on U\E(q), where

E(Q)={¢ €U : Iin} g(z) = oo}and are such that q' (&) = Ofor £ € OU \E(Q).
Lemma 2.2([10]) Let ¢(z) be univalentin U , y € C* = C \{0} and suppose that

Re{l+ L(Z)} > max{o,— Re(lJ}, z eU. If p(z)isanalyticinU , with p(0) =q(0) and
q'(2) y
p(z) + 7zp'(z) < q(z) +y2q'(z) , then p(z) < q(z), and q(z) is the best dominant.

Lemma 2.3 ([5]) Let q(z) be convex inU withq(0) =aand y € C, Re(y) >0.1f p(z) e H[a,1] and p(z) + yzp'(z) is
univalent in U , then q(z) + 72q'(z) < p(z) + yzp'(z) , implies

q(z) < p(z)and g(z)is the best subordinant.
MAIN RESULTS

Unless otherwise mentioned, we shall assume in the remainder of the paper that me N, = N {0}, z € U and the powers are

understood as principle values.

Theorem 3.1 Let f € A, u>0,14eC", >0, a real number such that &+ 8 > 0. Let the function ¢ be univalent in

U and suppose that it satisfies the condition

Re[1+ zq_(z)} > max{o,— Re(ﬁj}.
q'(2) A
Let

(o (a1t @Y (e pY it @Y (1)
(3.1) @(m,y,i,a,ﬂ,z)—(l /1( F; D( . j +ﬂ{ F; ][ . ](Izﬁf(z)}

If

(3.2) d(m, 1, A, ax, B;7) < q(z)+izq'(2),
Y7,

then

1" f(2))"
( ap L J < 0(z), and q(z) is the best dominant.
z

Proof. We define the function

m f H
(33) p(z) = [IﬁT(Z)} :

By finding the logarithmic derivative of (3.3) and using the identity (1.4), we obtain
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A (o (a1 @) | (a+p) 10 f@) (12512
(3.4) p(z)+#zp(z)—(l }{ F; J]{ . j+ﬂ{ F; j{ . ](lfﬁf(z)}

From (3.1), (3.2) and (3.4), we get

A_. A_ .,
p(z)+—12p'(2) <q(2) +—129'(2).
H H
. A . .
We apply now Lemma 2.2 with » = — to obtain the conclusion of our theorem.

U

Remark 3.2 i) Taking & =1 +1— 8 in Theorem 3.1, we obtain Theorem 1 of Aouf et.al. [3]

(Considered for | > 0).but our result hold true for | > —1.ii) Putting & =1— £ in Theorem 3.1, we get Theorem 3.1 of
Raducanu et.al. [16].

For £ =lin Theorem 3.1, we get the following corollary.

Corollary 33 Let f € A, u>0,1€C", a real number such thatcr >—1. Let the function ¢be univalent in U and
suppose that it satisfies the condition

Re{1+ zq_(z)} > max{o,— Re(ﬁJ}.
q'(2) A

Let
(3.5) D, (M, 1, Ay, 2) = (L— A(ex +1))(@j# + Ma +1)[ 2 fz(z) ]/[ 'I::ff((zz))j .
If ’
D, (M, 1,2, :2) < 4(2) + 229 (2),
then g

1"f(2) )"
(“T] < 0(z),and q(z)is the best dominant.

We obtain the following result from Theorem 3.1, by taking m = 0.

Corollary 3.4 Let f € A,u>0,2eC", >0, a real number such thatcx + 8 > 0. Let the functionqbe univalent in

U and suppose that it satisfies the condition
Re{1+ zq_(z)} > max{o,— Re(ﬁ]}.
q'(z) A
Let

o [ (et B\ @Y (arBY @Y (d@+pt @)
e cpz(”'l’“’ﬁ’z)‘(l ﬂ{ ; D( . ) ”( ; J[ . j( (@+ A1) J

If
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O, (1 A, 17) < 4(2) +%zq'(z),

then

u
(_f (Z)J <q(z),and q(z)is the best dominant.
z

We consider a particular convex function ¢(z) = , to give the following application of Theorem 3.1.

Corollary 3.5 Let A, B,eC, A= Bsuch that |B| <L u>0,1€C" f>0,a real number such that ¢+ >0 and

suppose that Re 1-82 > max3 0,—Re ﬁj .If (z) € Asatisfies the condition
1+Bz A

1+ Az +i (A-B)z

1+Bz u (1+Bz)®

where (M, 1, A, &, 5;2) is given by (3.1), then

I;‘ﬁf(Z) 1+Az 1+ Az, _
,and is the best dominant.
Z 1+ Bz 1+ Bz

d(m, 1, A, e, B;2) <

In a manner similar to that of Theorem 3.1, we can easily prove the following theorem, using the identity (1.6).

Theorem 3.6 Letf € A, t>0,1€C", 8 >0, a real number such that & + f# > 0. Let the functionqbe univalent in

U and suppose that it satisfies the condition

Re[ 29°(z )} max{O,—Re(ﬁ]}-
q'(2) A
Let
[ (@B (gY@ (I0,1@)
(3.7) ‘P(m,ﬂ,i,a,ﬂ’z)—(l ﬂ( F; jj[ z J (ﬂ j{ z NJmﬂf(Z)]

If

Y(m,u, A, e, f;2) <Qq(z) + & zq'(2),
MU

then

s o f (z)
< 0(z),and q(z) is the best dominant.
z

For £ =1lin Theorem 3.6, we get the following corollary.

Corollary 3.7 Let f € A, u>0,1€C", a real number such thatcr >—1. Let the function ¢be univalent in U and
suppose that it satisfies the condition

Re{1+ 2q°(2 )} > max{o,— Re(ﬁ}.
q'(2) A
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Let
m+1 H m+1 “ m
8 W, (m, 1, 2,03 7) = (1_/1(a+1))(‘]a—f(z)j + Ao +1)[J,1 f(Z)] ( Jalf (2) ]
z z I (2)
If
A_,
Wy (m, 1, 4, 0;2) < 0(2) + = 20'(2),
Y7
then
m+1 “
[—‘]a zf (Z)j < (z),and g(z)is the best dominant.

The next theorem is a result concerning a differential superordination.

Theorem 3.8 Let gbe convex in U with q(0) =1, #>0,4C with Re(1) >0, >0,and a real number such that

Iy, f(2)

a+ f>0. If f(z)e Asuch that [
YA

u
J e HILA N Q, ®(M, i, A, «, f;2)is univalent inU and satisfies the

superordination
@9) 4(2)+ 2 29'(2) < D, 1, 2y, ;7).
y7]

where d(M, 1, A, &, f;2) is given by (3.1), then
17,f(2)Y . _
q(z) <| —=——=| ,and q(z)is the best subordinant.
z

Proof. Let p(Z) be given by (3.3) and proceeding as in the proof of Theorem 3.1, (3.9) becomes

92+ 2 29 (2) < p@) + 2 29 (2).
7 7

The proof follows by an application of Lemma 2.3.

We get the following corollary on putting £ = 1in Theorem 3.8.

Corollary 3.9 Let be convex in U withq(0) =1, £ > 0,4 € C withRe(4) > 0,and a real number such that & > —1 If

1" f(z) )"
f(z) € Asuch that (“—()j e H[11]NnQ, ®, (M, u, A, «;z)is univalent inU and satisfies the superordination
z

m H
q(z) + 4 29'(z) < @, (M, g, A, ¢;Z) where @, (M, 1, A, «; Z) is given by (3.5), then q(z) < {LZ(Z)j ,and q(2)is
Y7,

the best subordinant.
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We obtain the following result from Theorem 3.8, by putting m = 0.

Corollary 3.10 Let the function g be convex inU with q(0) =1, > 0,1 € C", # > 0, a real number such that + 8 > 0.

m “
If f(z)e Asuch that (M] e H[L1NQ, ®,(M, 1, 4,x;2) is
z

A
univalent inU and satisfies the superordination @, (u, 4, &, B;2) < q(z) + —zq'(z), where @, (M, 1, 4, &x; Z) is given by
Y7

f(2)

u
(3.6), theng(z) < [—j ,and (z) is the best subordinant.
z

In a manner similar to that of Theorem 3.8, we can easily prove the following theorem.
Theorem 3.10 Let (be convex in U withq(0) =1, > 0,4 € CwithRe(1) >0, > 0,and a real number such that

J mi £ (5 “
a+ B >0.1f f(z) e A such that [L()] e HIL1]nQ, Y(m, i, A, ¢, ;) is univalent inU and satisfies the
z

superordination

4@+ 229 (2) < (M. Ao 1 2),
u

where W(m, 1, A, @, f3; 2) is given by (3.7), then

J m+1 f (Z) H
q(z) <| —2£—"2| and q(2)is the best subordinant.
Z

Taking £ = 1in Theorem 3.10, we get the following corollary.

Corollary 3.11 Let g be convex in U withq(0) =1, £ > 0,4 € C withRe(4) > 0,and areal

J m+1 .I: 7 “
number such that o > -1 If f(z) € Asuch that (“—()] e H[L1]nQ, W,(M, 1, A, ;) is univalent inU and
z

satisfies the superordination q(z)+£zq'(z) <Y (M, u,A,e;z), where W, (M, 1, A, ;Z) is given by (3.8), then
7

m+1 “
q(z) < (J"‘ff(z)] ,and (z) is the best subordinant.

Combining the results of Theorem 3.1 and Theorem 3.8, we state the following sandwich result.
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Theorem 3.12 Let ¢, and (,be convex in U withd;(0) =q,(0) =1, £ > 0,4 € CwithRe(1) >0, £>0,ande a real

1™ f(z))
number such that & + 8 > 0.1f f (z) € Asuch that [L()J e H[L1]nQ,
z

@(m, M, Aa,p; Z) is univalent inU and satisfies the superordination

0,(2) + 2 20,(2) < DM, 11, Aver, B12) < 0, (2) + 20, (2)
7 7

1" f@))
where @(m, 1, A, &, §;Z)is given by (3.1), then ql(z)<[L(z)] <Q,(2), 9,(z) and g,(z) are the best
z

subordinant and the best dominant respectively.

Combining the results of Theorem 3.6 and Theorem 3.10, we obtain the following sandwich result.

Theorem 3.13 Let g, and 0, be convex in U withg,(0) =q,(0) =1, >0,4 € CwithRe(1) >0, S >0,anda areal

J m+lf 7 H“
number such that & + £ > 0. 1f f (z) € Assuch that [L()j e HIL N Q, W(m, &, A, &, f; Z)is univalent inU and
YA

satisfies the superordination

q,(2) + % 20,(2) < W(M, 1, A, 0, B;2) < 0, (2) + % 29, (2)

Jm+1.|: H
where (M, 1, A, x, B;2)is given by (3.7), then Q,(z) <[L(Z)j <q,(2), 9,(z) and q,(z) are the best
z

subordinant and the best dominant respectively

Remark 3.14 Combining Corollaries 3.3, 3.9 and 3.7, 3.11, we get the corresponding sandwich results for the operators I(;"
and J ™ respectively.

Remark 3.15 Putting & =1 +1— f Theorem 3.8 and Theorem 3.12, we obtain Theorem 3 and Theorem 5, respectively, of
Aouf et.al. [3] (Considered for | > 0).But our results hold true for | > —1.

Remark 3.16 For@ =1— £ in Theorem 3.8 and Theorem 3.12, we get Theorem 3.6 and Theorem 3.9, respectively, of Raducanu
et.al. [16].

Remark 3.17 Taking & =1— £ in Corollary 3.4 and Corollary 3.5, we obtain Corollary 3.2 and Corollary 3.5, respectively, of
Raducanu et.al. [16].
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