

Volume 2, No. 4, April 2014

Journal of Global Research in Mathematical Archives

ISSN 2320 - 5822

Available online at http://www.jgrma.info

GEODESIC GRAPHOIDAL COVERING NUMBER OF BICYCLIC GRAPHS

T. Gayathri¹ and S. Meena²

Department of Mathematics^{1,2}, Sri Manakula Vinayagar Engineering College¹, Puducherry-605 107, India¹ E-mail: stgayathri10@yahoo.com¹ Government Arts and Science College², Chidambaram-608 102, India²

Abstract: A geodesic graphoidal cover of a graph G is a collection ψ of shortest paths in G such that every path in ψ has at least two vertices, every vertex of G is an internal vertex of at most one path in ψ and every edge of G is an exactly one path in ψ . The minimum cardinality of a geodesic graphoidal cover of G is called the geodesic graphoidal covering number of G and is denoted by η_g . In this paper we determine η_g for bicyclic graphs.

Key words: Graphoidal covers, acyclic graphoidal cover, Geodesic Graphoidal cover, bicyclic graphs

1 Introduction

A graph is a pair G = (V, E), where *V* is the set of vertices and *E* is the set of edges. Here we consider only nontrivial, finite, connected, undirected graph without loops or multiple edges. The order and size of *G* are denoted by *p* and *q* respectively. For graph theoretic terminology we refer to Harary [4]. The concept of graphoidal cover was introduced by B.D Acharya and E. Sampathkumar [1] and the concept of acyclic graphoidal cover was introduced by Arumugam and Suresh Suseela [4]. The reader may refer [5] and [2] for the terms not defined here.

Let $P = (v_1, v_2, v_3, ..., v_r)$ be a path or a cycle in a graph G = (V, E). Then vertices $(v_2, v_3, ..., v_{r-1})$ are called internal vertices of *P* and v_1 and v_r are called external vertices of *P*. Two paths *P* and *Q* of a graph G are said to be internally disjoint if no vertex of *G* is an internal vertex of both P and *Q*.

Definition 1.1 [1] — A graphoidal cover of a graph G is called a collection ψ of (not necessarily open) paths in G satisfying the following conditions:

- (i) Every path in ψ has at least two vertices.
- (ii) Every vertex of G is an internal vertex of at most one path in ψ .
- (iii) Every edge of G is in exactly one path in ψ

The minimum cardinality of a graphoidal cover of G is called the graphoidal covering number of G and is denoted by $\eta(G)$.

Definition 1.2 [3] — A graphoidal cover ψ of a graph G is called an acyclic graphoidal cover if every member of ψ is an open path. The minimum cardinality of an acyclic graphoidal cover of G is called the acyclic graphoidal covering number of G and is denoted by $\eta_a(G)$ or η_a .

Definition 1.3 [4] — A geodesic graphoidal cover of a graph G is a collection ψ of shortest paths in G such that every path in ψ has at least two vertices, every vertex of G is an internal vertex of at most one path in ψ and every edge of G is an exactly one path in ψ . The minimum cardinality of a geodesic graphoidal cover of G is called the geodesic graphoidal covering number of G and is denoted by η_g .

Definition 1.4 [1] — Let ψ be a collection of internally disjoint paths in G. A vertex of G is said to be in the interior of ψ if it is an internal vertex of some path in ψ . Any vertex which is not in the interior of ψ is said to be an exterior vertex of ψ .

Theorem 1.5 [7]— For any graphoidal cover ψ of G, let t_{ψ} denote the number of exterior vertices of ψ . Let $t = \min t_{\psi}$ where the minimum is taken over all graphoidal covers of G. Then $\eta = q - p + t$

Corollary 1.6[7] —For any graph G, $\eta \ge q - p$. Morever the following are equivalent.

(i)
$$\eta = q - p$$

(ii) There exists a graphoidal cover without exterior vertices.

(iii) There exists a set of internally disjoint and edge disjoint paths without exterior vertices.

In [4] it is given that $\eta \leq \eta_a \leq \eta_g$ and these inequalities can be strict and also for a tree $\eta = \eta_a = \eta_g = n-1$ and Theorem 1.5 and corollary 1.6 are true for geodesic graphoidal covers.

They observe that $\eta_g = q$ if and only if G is Complete. Further for a cycle C_m , $\eta_g = \begin{cases} 2 & \text{if m is even} \\ 3 & \text{if m is odd} \end{cases}$

Theorem 1.7 [4] —Let G be a unicyclic graph with unique cycle C which is even. Let n denote the number of pendant vertices of G and let m denote the number of vertices on C with degree greater than 2. Then

 $\eta_{g} = \begin{cases} 2 \text{ if } m = 0 \\ n \begin{pmatrix} \text{if } m \ge 2 \text{ and every } (v, w) \text{-section of C in which all vertices} \\ except v \text{ and } w \text{ have degree 2 is a shortest path} \\ n+1 \text{ otherwise} \end{cases}$

Theorem 1.8 [4] — Let G be a unicyclic graph with unique cycle C of odd length 2k+1, $k \ge 1$. Let *n* denote the number of pendant vertices of G and let *m* denote the number of vertices of degree greater than 2 on C with. Then

$$\eta_{g} = \begin{cases} 3 & \text{if } m = 0 \\ n+2 & \text{if } m = 1 \\ n \begin{pmatrix} \text{if } m \ge 2 \text{ and every } (v, w) \text{-section of C in which all vertices} \\ \text{except } v \text{ and } w \text{ have degree 2 is a shortest path} \\ n+1 \text{ otherwise} \end{cases}$$

Definition 1.9 [8] — A connected (p, p+1) graph G is called a bicyclic graph.

Definition 1.10 [8] — A one – point union of two cycles is a simple graph obtained from two cycles, say C_l and C_m where $l,m \ge 3$, by identifying one and the same vertex from both cycles. Without loss of generality, we may assume the *l*-cycle to be $u_0u_1...u_{l-1}u_0$ and the *m*-cycle to be $u_0u_lu_{l+1}...u_{m+l-2}u_0$. We denote this graph by U(l;m)

Definition 1.11 [8] — A long dumbbell graph is a simple graph obtained by joining two cycles C_l and C_m where $l,m \ge 3$, with a path of length i, $i \ge 1$. Without loss of generality, we may assume $C_l = u_0 u_1 \dots u_{l-1} u_0$, $P_i = u_{l-1} u_l u_{l+1} \dots u_{l+i-1}$ and $C_m = u_{l+i-1} u_{l+i} \dots u_{l+m+i-2} u_{l+i-1}$. We denote this graph by D(l,m,i)

Definition 1.12 [8] — A cycle with a long chord is a simple graph obtained from an *m*-cycle,

 $m \ge 4$, by adding a chord of length l where $l \ge 1$. Let the *m*-cycle be $u_0 u_1 \dots u_{m-1} u_0$. Without loss of generality, we may assume the chord joins u_0 with u_i , where $2 \le i \le m-2$. That is, $u_0 u_m u_{m+1} \dots u_{l+m-2} u_i$ is the chord. We denote this graph by $C_m(i;l)$

In this paper we determine η_g for bicyclic graphs containing a U(l;m), D(l,m,i), $C_m(i;l)$.

2. Main Results

Theorem 2.1

Let G be a bicyclic graph containing a U(l,m) and both the cycles are of even length. Let *n* denote the number of pendant vertices of G and let *m* denote the number of vertices of degree greater than 2 on U(l,m). Then

$$\eta_{g} = \begin{cases} 3 & \text{if } m = 0 \\ n+2 & \text{if } m = 1 \text{ and } \deg u_{k} \ge 3, u_{k} = u_{i} \\ n+1 \begin{pmatrix} \text{if } m \ge 2 \text{ and every } (v, w) \text{-section of } C \text{ in which all vertices} \\ \text{except } v \text{ and } w \text{ have degree } 2 \text{ is a shortest path} \\ n+3 \text{ otherwise} \end{cases}$$

Proof:

Let
$$V(U(l,m)) = \{u_0, u_1, u_2, \dots, u_{l-1}, u_l, u_{l+1}, \dots, u_{l+m-2}\}$$

 $V(C_l) = \{u_0, u_1, u_2, \dots, u_{l-1}, u_0\}$

© JGRMA 2013, All Rights Reserved

$$V(C_m) = \{u_0, u_l, u_{l+1}, \dots, u_{l+m-2}, u_0\}$$
 where *l* and *m* are even.

Then G = U(l,m)

The geodesic graphoidal path double covering is as follows

$$P_{1} = \left\{ u_{i}, u_{i-1}, \dots, u_{1}, u_{0}, u_{l}, u_{l+1}, \dots, u_{j} \right\} \quad [i = \frac{l}{2} \& j = l + \frac{m}{2} - 1]$$

$$P_{2} = \left\{ u_{i}, u_{i+1}, \dots, u_{0} \right\}$$

$$P_{3} = \left\{ u_{0}, u_{l+m-2}, \dots, u_{j} \right\}$$

$$\Rightarrow \eta_{g} \leq 3$$

Since atleast two vertices on U(l;m) are exterior vertices in any minimum geodesic graphoidal cover so that $t \ge 2$

Hence
$$\eta_g \ge q - p + 2 \Longrightarrow \eta_g \ge 3$$

Thus $\eta_g = 3$

Case 2: m = 1

Let u_k be the unique vertex of degree greater than 2 on U(l,m) other than u_0

Without loss of generality assume that u_k lies on C_l

Sub Case 2a

If
$$k = \frac{l}{2}$$

Let $G_1 = G - \{u_1, u_2, ..., u_{k-1}\}$ is a unicyclic graph with *n* pendant vertices and m = 1.

By Theorem 1.7 $\eta_g(G_1) = n+1$

Let Ψ_1 be a minimum geodesic graphoidal cover of G_1

Clearly any path in Ψ_1 is a shortest path in G also and hence

$$\psi = \psi_1 \cup P$$
 Where $P = \{u_0, u_1, u_2, ..., u_k\}$ is a geodesic graphoidal cover of G.

$$\Rightarrow \eta_g(G) \le n+2$$

Further all the *n* pendant vertices and at least one vertex on U(l,m) is an exterior point of any minimum geodesic graphoidal cover ψ so that $t \ge n+1$

$$\eta_{g}(G) = q - p + t \ge n + 2$$
$$\therefore \eta_{g}(G) = n + 2$$

Sub Case 2b

If
$$u_k \neq u_i$$

Without loss of generality assume that let $k < \frac{l}{2}$

Let $G_1 = G - \{u_{i+1}, u_{i+2}, \dots, u_{l-1}\}$ is a unicyclic graph with n + 1 pendant vertices and m = 1.

By Theorem 1.7 $\eta_g(G_1) = n+2$

Let Ψ_1 be a minimum geodesic graphoidal cover of G_1

Clealy any path in Ψ_1 is a shortest path in G also and hence

 $\psi = \psi_1 \cup P$ Where $\mathbf{P} = \{u_i, u_{i+1}, u_{i+2}, \dots, u_{l-1}, u_0\}$ is a geodesic graphoidal cover of G.

$$\Rightarrow \eta_g(G) \le n+2+1=n+3$$

Further all the pendant vertices and at least two vertices on U(l,m) is an exterior points of any minimum geodesic graphoidal cover ψ so that $t \ge n+2$ ($u_i \& u_j$ are exterior points)

$$\eta_g(G) = q - p + t \ge 1 + n + 2 \ge n + 3$$
$$\therefore \eta_g(G) = n + 3$$

Case 3: $m \ge 2$ and there is exactly one (v,w) section of each of the cycles on U(l,m) in which all the vertices except v and w have degree 2 and this (v,w) section is not a shortest path.

Let this (v,w) section be denoted by $(v = u_s, u_{s+1}, \dots, u_t = w)$ where 1 < s, $t < \frac{l}{2}$

Let
$$G_1 = G - \{u_{i+1}, u_{i+2}, \dots, u_{l-1}\}$$

Then G₁ is a unicyclic graph with n+1 pendant vertices and m=1

By Case 2 $\eta_{g}(G_{1}) = n+1+1 = n+2$

Hence $\eta_g(G) = n+3$ © JGRMA 2013, All Rights Reserved Suppose this (v,w) section be denoted by

$$(v = u_s, u_{s+1}, \dots, u_t = w)$$
 where $1 < s < \frac{l}{2}, 1 < t < \frac{m}{2} \& u_s$ lies on C_l, u_t lies on C_m

Then $G_1 = G - \{u_{i+1}, u_{i+2}, \dots, u_{l-1}\}$ is a unicyclic graph with n+1 pendant vertices and m = 2

By Theorem 1.7

$$\eta_g(G_1) = n + 1 \Longrightarrow \eta_g(G) = n + 2$$

Case 4: $m \ge 2$ and there is exactly one (v,w) section of each of the cycles on U(l,m) in which all the vertices except v and w have degree 2 and this (v,w) section is a shortest path.

In this case we prove the result by induction on n.

When n = 2, G consists of U(l, m) and two paths.

These two paths should lie in the different cycles such that $P_1 = \{u_i, v_t, v_{t-1}, \dots, v_1\} \& P_2 = \{u_j, w_t, w_{t-1}, \dots, w_1\}$ where u_i on $C_l \& u_j$ on C_m .

Now $G_1 = G - \{u_{i+1}, u_{i+2}, ..., u_{l-1}\}$ is a unicyclic graph with 2 pentant vertices and m = 2

By Theorem 1.7 $\eta_g(G_1) = 2$

Let Ψ_1 be a minimum geodesic graphoidal cover of G_1

Clearly any path in \mathcal{V}_1 is a shortest path in G also and hence

 $\psi = \psi_1 \cup \{u_i, u_{i+1}, \dots, u_{l-1}, u_0\}$ is a minimum geodesic graphoidal cover of G.

$$(i.e.)\psi = \{(v,w) \text{Section} \cup (u_0,u_i) \text{Section} \cup (u_0,u_j) \text{Section} \}$$

$$\Rightarrow \eta_g(G) = 3 = n + 1$$

We now assume that the result is true for all bicyclic graph contains a U(l,m)

Satisfying the condition stated in case 4 with n-1 pendant vertices with $m \ge 2$.

Let G be a bicyclic graph contains a U(l,m) Satisfying the condition stated in case 4 with *n* pendant vertices where $n \ge 3$ with $m \ge 2$.

Let $P_1 = \{u_i, v_t, v_{t-1}, \dots, v_1\}$ be a path in G such that deg $v_1 = 1$, deg $v_2 = \deg v_3 = \dots = \deg v_t = 2$, & deg $u_i \ge 3$ and P is disjoint from U(l, m) when m=2.

Let $G_1 = G - \{v_1, v_2, ..., v_t\}$ is a bicyclic graph contains a U(l, m) Satisfying the condition stated in case 4 with n-1 pendant vertices with $m \ge 2$.

If every (v,w) section of each of the cycles on U(l,m) in G_1 in which all the vertices except v and w have degree 2 is a shortest path then by induction hypothesis $\eta_g(G_1) = n - 1 + 1 = n$

Let Ψ be a minimum geodesic graphoidal cover of G_1

Then
$$\psi \cup \{p\}$$
 minimum geodesic graphoidal cover of G

$$\Rightarrow \eta_g(G) \le n+1$$

Suppose there is a (v,w) section of each of the cycles on U(l,m) say (u_1, u_k) section in G_1 in which all the vertices except $u_1 \& u_k$ have degree 2 and this (u_1, u_k) section is not a shortest path then by case 3 $\eta_g(G_1) = n+1$

Let
$$P = (u_0, u_1, u_2, \dots, u_i)$$
 where $1 < i < \frac{l}{2}$ is a shortest path.

Let ψ be a minimum geodesic graphoidal cover of G_1 and let P_1 be a path in ψ where u_i is external. Let Q be the path consisting of all edges of P_1 and P

Then $(\psi - \{P_1\}) \cup \{Q\}$ is a geodesic graphoidal cover of G.

$$\Rightarrow \eta_g(G) \le n+1$$

Further all the *n* pendant vertices on U(l,m) are exterior points of any minimum geodesic graphoidal cover ψ so that $t \ge n$

$$\eta_g(G) = q - p + t \ge n + 1$$
$$\therefore \eta_g(G) = n + 1$$

Theorem 2.2

Let G be a bicyclic graph containing a U(l,m) and any one of the cycles is of odd length.

Let *n* denote the number of pendant vertices of G and let *m* denote the number of vertices of degree greater than 2 on U(l,m).

Then
$$\eta_g = \begin{cases} 4 & \text{if } m = 0 \\ n+2 & \text{if } m \ge 2 \text{ and every } (v, w) \text{-section of } C \text{ in which all vertices} \\ except v \text{ and } w \text{ have degree } 2 \text{ is a shortest path} \\ n+3 \text{ otherwise} \end{cases}$$

Proof:

Let
$$V(U(l,m)) = \{u_0, u_1, u_2, \dots, u_{l-1}, u_l, u_{l+1}, \dots, u_{l+m-2}\}$$

$$V(C_{l}) = \{u_{0}, u_{1}, u_{2}, \dots, u_{l-1}, u_{0}\}$$

 $V(C_m) = \{u_0, u_l, u_{l+1}, \dots, u_{l+m-2}, u_0\}$ where *l* is odd and *m* is even.

Case 1: m = 0

Then G =
$$U(l,m)$$

The geodesic graphoidal path double covering is as follows

$$P_{1} = \{u_{i}, u_{i-1}, \dots, u_{1}, u_{0}, u_{l}, u_{l+1}, \dots, u_{k}\}$$

$$P_{2} = \{u_{i}, u_{i+1}\}$$

$$P_{3} = \{u_{i+1}, \dots, u_{0}\}$$

$$P_{4} = \{u_{0}, u_{l+m-2}, \dots, u_{k}\} \text{ where } [i = \frac{l-1}{2} \& k = l + \frac{m}{2} - 1]$$

$$\therefore \eta_{g} \le 4$$

Since atleast three vertices on U(l;m) are exterior vertices in any minimum geodesic graphoidal cover so that $t \ge 3$

Hence
$$\eta_g \ge q - p + 3 \Longrightarrow \eta_g \ge 4$$

Thus $\eta_g = 4$

For the remaining cases the proof is similar to the Theorem 2.1. Choose the deletion vertices from the odd cycle only so that the graph G_1 always will be a unicyclic graph with even cycle.

Theorem 2.3

Let G be a bicyclic graph containing a U(l,m) and both the cycles is of odd length.

Let *n* denote the number of pendant vertices of G and let *m* denote the number of vertices of degree greater than 2 on U(l,m). Then

$$\eta_{g} = \begin{cases} 5 & \text{if } m = 0\\ n+3 \begin{pmatrix} \text{if } m \ge 2 \text{ and every } (v, w) \text{-section of } C \text{ in which all vertices} \\ \text{except } v \text{ and } w \text{ have degree } 2 \text{ is a shortest path} \\ n+4 \text{ otherwise} \end{cases}$$

Proof:

Let
$$V(U(l,m)) = \{u_0, u_1, u_2, \dots, u_{l-1}, u_l, u_{l+1}, \dots, u_{l+m-2}\}$$

© JGRMA 2013, All Rights Reserved

$$V(C_{l}) = \{u_{0}, u_{1}, u_{2}, \dots, u_{l-1}, u_{0}\}$$
$$V(C_{m}) = \{u_{0}, u_{l}, u_{l+1}, \dots, u_{l+m-2}, u_{0}\} \text{ where } l \text{ and } m \text{ are odd.}$$

Case 1: m = 0

Then G = U(l,m)

The geodesic graphoidal path double covering is as follows

$$P_{1} = \{u_{i}, u_{i-1}, \dots, u_{1}, u_{0}, u_{l}, u_{l+1}, \dots, u_{k}\}$$

$$P_{2} = \{u_{i}, u_{i+1}\}$$

$$P_{3} = \{u_{i+1}, \dots, u_{0}\}$$

$$P_{4} = \{u_{k+1}, u_{k}\}$$

$$P_{5} = \{u_{0}, u_{l+m-2}, \dots, u_{k+1}\} \text{ where } [i = \frac{l-1}{2} \& k = l + \frac{(m-1)}{2} - 1]$$

$$\therefore \eta_{g} \le 5$$

Since atleast four vertices on U(l;m) are exterior vertices in any minimum geodesic graphoidal cover so that $t \ge 4$

Hence
$$\eta_g \ge q - p + 4 \Longrightarrow \eta_g \ge 5$$

Thus $\eta_g = 5$

The proof for the remaining cases is similar to that of Theorem 2.1.

From the Theorem 2.1 to Theorem 2.3 we have the following

Theorem 2.4

Let G be a bicyclic graph containing a long dumbbell graph D(l,m,i) if both cycles are of even length (or any one of the cycle is even). Let *n* denote the number of pendant vertices of G and let *m* denote the number of vertices of degree greater than 2 on D(l,m,i). Then

$$\eta_{g} = \begin{cases} 3 & \text{if } m = 0\\ n+1 \begin{pmatrix} \text{if } m \ge 2 \text{ and every } (v, w) \text{-section of } C \text{ in which all vertices} \\ \text{except } v \text{ and } w \text{ have degree } 2 \text{ is a shortest path} \\ n+3 \text{ otherwise} \end{cases}$$

Theorem 2.5

© JGRMA 2013, All Rights Reserved

Let G be a bicyclic graph containing a long dumbbell graph D(l,m,i) if both cycles are of odd length. Let *n* denote the number of pendant vertices of G and let *m* denote the number of vertices of degree greater than 2 on D(l,m,i). Then

$$\eta_{g} = \begin{cases} 5 & \text{if } m = 0\\ n+3 \begin{pmatrix} \text{if } m \ge 2 \text{ and every } (v, w) \text{-section of } C \text{ in which all vertices} \\ \text{except } v \text{ and } w \text{ have degree } 2 \text{ is a shortest path} \\ n+4 \text{ otherwise} \end{cases}$$

Theorem 2.6

Let G be a bicyclic graph containing a $C_m(i;l)$ if both cycles are of even length. Let *n* denote the number of pendant vertices of G and let *m* denote the number of vertices of degree greater than 2 on $C_m(i;l)$. Then

$$\eta_{g} = \begin{cases} 3 & \text{if } m = 0\\ n+1 \begin{pmatrix} \text{if } m \ge 2 \text{ and every } (v, w) \text{-section of } C \text{ in which all vertices} \\ \text{except } v \text{ and } w \text{ have degree } 2 \text{ is a shortest path} \\ n+3 \text{ otherwise} \end{cases}$$

Theorem 2.7

Let G be a bicyclic graph containing a $C_m(i;l)$ if both cycles are of odd length. Let *n* denote the number of pendant vertices of G and let *m* denote the number of vertices of degree greater than 2 on $C_m(i;l)$. Then

$$\eta_g = \begin{cases} 4 & \text{if } m = 0\\ n+1 \begin{pmatrix} \text{if } m \ge 2 \text{ and every } (v, w) \text{-section of } C \text{ in which all vertices} \\ \text{except } v \text{ and } w \text{ have degree } 2 \text{ is a shortest path} \\ n+3 \text{ otherwise} \end{cases}$$

References

- [1] B.D. Acharya and E. Sampathkumar, Graphoidal covers and graphoidal covering number of a graph, Indian J.Pure Appl.Math.18 (10) (1987), 882-890.
- [2] S.Arumugam, B.D.Acharya and E.Sampathkumar, Graphoidal covers of a graph:a creative review, in Proc.National Workshop on Graph theoryand its applications, ManonmaniamSundaranar University, Tirunelveli, Tata McGraw-Hill, New Delhi, (1997), 1-28.
- [3] S.Arumugam and J.Suresh Suseela, Acyclic graphoidal covers and path partitions in a graph, Discrete Math. 190(1998), 67-77
- [4] In S. Arumugam and J. Suresh Suseela ,Geodesic Graphoidal covering number of a graph J. Indian. Math. Soci., 72(2005), 99-106.
- [5] F.Harary, Graph Theory, Addison-Wesley, Reading, MA, 1969.
- [6] Hao Li, Perfect path double covers in every simple graph, Journal of Graph Theory, 14 (6) (1990), 645–650.

- [7] C.Packkiam and S.Arumugam, The graphoidal covering number of unicyclic graphs, Indian J.Pure appl.Math.23(2)(1992),141-143.
- [8] On Graphoidal Covers of Bicyclic Graphs. K.Ratan Singh and P.K.Das. International Mathematical Fourm, 5(42),(2010), 2093-2101.