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Abstract: In this paper, we apply a proposed approach for solving multi-objective engineering design problem (MOEDP) with multiple 

objectives. In the proposed approach, a reference point based multi-objective optimization (MOO) using a combination between trust region 

(TR) algorithm and particle swarm optimization (PSO). The integration of TR and PSO has improved the quality of the founded solutions; also it 

guarantees the faster converge to the Pareto optimal solution. TR has provided the initial set (close to the Pareto set as possible) followed by 

PSO to improve the quality of the solutions and get all the points on the Pareto frontier. Detailed numerical results on three different MOEDP are 

reported to demonstrate the effectiveness and advantages of the proposed algorithm for solving practical MOEDP. 
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INTRODUCTION  

The MOO is a very important research area in engineering studies because real world design problems require the optimization of a 
group of objectives. Thanks to the effort of scientists and engineers during the last two decades, particularly the last decade, a 
wealth of multi-objective (MO) optimizers have been developed, and some multi-objective optimization problems (MOOPs) that 
could not be solved hitherto were successfully solved by using these optimizers. In terms of robustness and efficiency of the 
available vector optimizers, these optimizers are still in need of improvements and hence there are many unresolved open problems 
[1]. 
 
This paper intends to present an optimal design of different MOEDPs using hybrid approach which is a combination between 
numerical optimization method (TR algorithm) and one of the swarm intelligence techniques (PSO optimization). It is a new 
algorithm that performs TR as deterministic search and PSO as random search.  
Trust region is reliable and robust, can be applied to ill-conditioned problems, very strong convergence properties, and has been 
proven to be theoretically and practically effective and efficient for unconstrained and equality constrained optimization problems 
[2, 3]. PSO is an evolutionary computational (EC) model and developed by Kennedy and Elberhart [4], which have been inspired 
by the research of the artificial livings. 
 
In addition, the proposed approach is based on a reference point method which is interactive approach of Wierzbickiis [5], which 
allows the decision maker to reach solutions close to him important points. For a chosen reference point the closest Pareto optimal 
solution is the target solution to the reference point method. 
 
There engineering design problems are discussed, two-bar truss design, gear train design, and air-cored solenoid design [6,7]. The 
results are compared by another approach which solving these design problems to show the reliability of our approach and its ability 
for solving this kind of problems. 
 
This paper is organized as follows. In section 2, MOO with Reference Point Interactive Approach is described. Section 3 and 4, are 
provides an overview of the TR algorithm and PSO respectively. The proposed algorithm is presented in section 5. Numerical 
results are given and discussed in section 6. Finally, section 7 gives a brief conclusion about this study. 

MOO WITH REFERENCE POINT INTERACTIVE APPROACH 

Definition of MOO 

Multiobjective optimization (also called multicriteria optimization, multiperformance or vector optimization) can be defined as the 
problem of finding a vector of decision variables which satisfies constraints and optimizes a vector function whose elements 
represent the objective functions. These functions form a mathematical description of performance criteria which are usually in 
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conflict with each other. Hence, the term “optimize” means finding such a solution which would give the values of all the objective 
functions acceptable to the designer [1,8]. The general minimization problem of q  objectives can be mathematically stated as: 

minimize :                                 ,  1, 2,...,

subject to the constraints :        0,     i 1, 2,..., ,

                                                  0,      1, 2,..., ,

jf x f x j q

Ci x p

Ce x e m

                                                    (1) 

where jf x is the j-th objective function ,Ci x  is the i-th inequality constraint, eC x  is the e-th equality constraint and 

1 2, ,..., nx x x x  is the vector of optimization or decision variables; where n  the dimension of the decision variable space. The 

MOO problem then reduces to finding a x  such that jf x  is optimized. Since the notion of an optimum solution in MOOP is 

different compared to the SOOP, the concept of Pareto dominance is used for the evaluation of the solutions. This concept 
formulated by Vilfredo Pareto is defined as [9]: 
 

Definition 1. (Dominance Criteria [5]). For a problem having more than one objective function (say, jf , 1,...,j q , 1q ), any 

two solution 
ax  and 

bx  can have one of two possibilities, one dominates the other or none dominates the other. A solution 
ax  is 

said to dominate the other solution
bx , if both the following condition are true: 

- The solution 
ax  is no worse (say the operator p  denotes worse and f  denotes better) than 

bx  in all objectives, or 

j af x p j bf x  for all 1,...,j q  objectives. 

- The solution 
ax  is strictly better than 

bx  in at least one objective, or j a j bf x f xf  for at least one 1,...,j q .  

If any of the above condition is violated, the solution 
ax  dose not dominates the solution

bx . 

Definition 2. (Pareto optimal solution). *x  is said to be a Pareto optimal solution of MOOP if there exists no other feasible x  such 

that, 
*

j jf x f x  for all 1,...,j q  and 
*

j jf x f x for at least one objective function jf . 

Reference Point Interactive Approach [10] 

As an alternative to the value function methods, Wierzbicki [5] suggested the reference point approach in which the goal is to 
achieve a weakly, ε-properly or Pareto-optimal solution closest to a supplied reference point of aspiration level based on solving an 
achievement scalarizing problem. Given a reference point z for an M-objective optimization problem of minimizing 

( 1 2, ,...., qf x f x f x ) with x belongs to the search space, the following single-objective optimization problem is solved for 

this purpose: 

1minimize :   max

subject to:   x 0,        i 1,2,..., ,

                    0,      1,2,..., ,

q

j j j jw f x z

Ci l

Ce x e m

                                                               (2) 

Here, jw  is the j-th component of a chosen weight vector used for scalarizing the objectives. Figure 1 illustrates the concept. For a 

chosen reference point, the closest Pareto optimal solution (in the sense of the weighted-sum of the objectives) is the target solution 
to the reference point method. To make the procedure interactive and useful in practice, Wierzbicki [5] suggested a procedure in 

which the obtained solution z  is used to create q new reference points, as ;i iz z z z e  

 

 
Figure 1.  Classical reference point approach. 
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where 
ie  is the i-th coordinate direction vector. For the two-objective problem shown in the figure, two such new reference points 

(
Az  and 

Bz ) are also shown. New Pareto-optimal solutions are then found by forming new achievement scalarizing problems. If 

the decision-maker is not satisfied with any of these Pareto-optimal solutions, a new reference point is suggested and the above 
procedure is repeated. It is interesting to note that the reference point may be a feasible one (deducible from a solution vector) or an 
infeasible point which cannot be obtained from any solution from the feasible search space. If a reference point is feasible and is not 
a Pareto-optimal solution, the decision-maker may then be interested in knowing solutions which are Pareto-optimal and close to 
the reference point. On the other hand, if the reference point is an infeasible one, the decision-maker would be interested in finding  
 
Pareto-optimal solutions which are close to the supplied reference point.  
To utilize the reference point approach in practice, the decision-maker needs to supply a reference point and a weight vector at a 
time. The location of the reference point causes the procedure to focus on a certain region in the Pareto-optimal frontier, whereas a 
supplied weight vector makes a finer trade-off among the objectives and focuses the procedure to find a single Pareto-optimal 
solution (in most situations) trading-off the objectives. Thus, the reference point provides a higher-level information about the 
region to focus and weight vector provides a more detailed information about what point on the Pareto-optimal front to converge. 

TRUST REGION ALGORITHM 

Trust region method generate steps with the help of a quadratic model of the objective function, define a region around the current 
iterate within which they trust the model to be an adequate representation of the objective function, and then choose the step to be 
approximate minimzer of the model in this region. If a step is not acceptable, they reduce the size of the region and find a new 
minimize. In general, the direction of the step changes whenever the size of the TR is altered [11,12]. To see the idea of TR, 
consider the unconstrained optimization problem 

minimize    x
nx

f


                                (3) 

where xf  is a nonlinear continuous differentiable function in n . For a known iterate 
kx  the TR method determines 

subsequent iterate using  

1 ,k k kx x d                                                                       (4) 

where 
kd  is trial step determined by minimizing a local quadratic (approximating) model of f  at 

kx  (TR sub-problem) given by 

1
minimize     

2

subject to    ,

T T

k k k k

k

q d f f d d H d

d

                       (5) 

where 
kH  is hessian of f x  or approximate to it, and 0k

 is the TR radius. Using the ratio  

 

,
0

k k k

k

k k k

f x f x d
r

q q d
                                                   (6) 

traditional TR methods evaluate an agreement between the model and the objective function. The trial step 
kd  is accepted 

whenever 
kr  is greater than a positive constant. This leads us to the new point 

1k k kx x d , and the TR radius is updated. 

Otherwise, the TR radius must be diminished and the sub-problem (5) must be solved again [13]. 
Because of the boundedness of the TR, TR algorithms can use non-convex approximate models. This is one of the advantages of 
TR algorithms comparing with line search algorithms. TR algorithms are reliable and robust, they can be applied to ill-conditioned 
problems, they have very strong convergence properties, and have been proven to be theoretically and practically effective and 
efficient for unconstrained and equality constrained optimization problems [2,14,15]. Also, The TR algorithm has proven to be a 
very successful globalization technique for nonlinear programming problems with equality and inequality constraints [3,16,17]. 
For MOOPs, Kim and Ryu [18] developed an iterative algorithm for bi-objective stochastic optimization problems based on the TR 
method and investigated different sampling schemes. Their algorithm does not require any strong modeling assumptions, and has 
great potential to work well in various real-world settings. El-Sobky [19] used the TR algorithm in solving an interactive approach 
for MOOPs; where an active set strategy is used together with a reduced Hessian technique to convert the single objective 
optimization problem with quality and inequality constraints to equality constrained optimization problem and the computation of 
the trial step to two easy TR sub-problems similar to those for the unconstrained case. 

PARTICLE SWARM OPTIMIZATION 

PSO is an EC model which is based on swarm intelligence. PSO is developed by Kennedy and Elberhart [4] who have been inspired 
by the research of the artificial livings. Similar to EC techniques, PSO is also an optimizer based on population. The system is 
initialized firstly in a set of randomly generated potential solutions, and then performs the search for the optimum one iteratively. 
Whereas the PSO does not possess the crossover and mutation processes used in EC, it finds the optimum solution by swarms 
following the best particle. Compared to EC, the PSO has much more profound intelligent background and could be performed 
more easily. Based on its advantages, the PSO is not only suitable for science research, but also engineering applications, in the 
fields of evolutionary computing, optimization and many others. 

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/k/Kim:Sujin.html
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The basic PSO algorithm is constructed as follows: Consider a swarm of N  particles or birds. For particle ,i  it was originally 

proposed that the position 
ix  is updated in the following manner: 

1 1t t t

i i ix x v                                                                                               (7) 

with the velocity 1t

iv  calculated as follows:  

1

1 1 2 2 .t t t t

i i i i g iv wv c r p x c r p x                                                                          (8) 

Here, subscript t indicates an pseudo-time increment. 
ip represents the best ever position of particle i at time t, with gp  

representing the global best ever position in the swarm at time t . 
1r  and 

2r  represent uniform random numbers between 0 and 1. 

Figure 2 shows the Description of velocity and position updates of a particle for a two-dimensional parameter space.  
MOO has been one of the most studied application areas of PSO algorithms. Number of approaches have been utilized and/or 
designed to tackle MOOPs using PSO. A comprehensive survey of the state-of-the-art in Multi-objective particle swarm optimizers 
can be found in [20] where different techniques reported in multi-objective PSO development have been categorized and discussed. 

 
Figure 2.  Description of velocity and position updates in PSO for a two dimensional parameter space. 

THE PROPOSED APPROACH 

In this section, the proposed algorithm is presented. The proposed algorithm contains three stages initialization stage, TR stage and 
PSO stage. 

Initialization stage 

1- Initialization 
Initialize N reference points in the search space, TR parameters, and PSO parameters. 
2- Reference Point method 
The classical reference point approach discussed above, will find a solution depending on the chosen weight vector and is therefore 
subjective. Moreover, the single solution is specific to the chosen weight vector and does not provide any information about how the 
solution would change with a slight change in the weight vector. To find a solution for another weight vector, a new achievement 
scalarizing problem needs to be formed again and solved. Moreover, despite some modifications [21], the reference point approach 
works with only one reference point at a time. However, the decision-maker may be interested in exploring the preferred regions of 
Pareto-optimality for multiple reference points simultaneously. With the above principles of reference point approaches and 
difficulties with the classical methods, we use a methodology by which a set of Pareto-optimal solutions near a supplied set of 
reference points will be found, thereby eliminating the need of any weight vector and the need of applying the methodologies again 
and again.  

Given a reference point for an q-objective optimization problem of minimizing ( 1 ,..., qf x f x ) with x belongs to the search 

space, the following single-objective optimization problem is solved: 
1

1

minimize :   

subject to:   x 0,        i 1, 2,..., ,

                    0,      1, 2,..., ,

pq
p

j j

j

f x f x z

Ci l

Ce x e m                                                                        

  (9) 

where the parameter p  can take any value between 1 and ∞. When 2p  is used, an Euclidean distance of any point in the 

objective space from the reference point z  is minimized. 

TR Stage 

This section is devoted to presenting the detailed description of TR algorithm for solving problem (9) (see [22]). The TR algorithm 
combines ideas from Byrd [23], Omojokun [24], El Alem [25].  

Following Dennis et al. [26], we define the indicator matrix 
p pW x  , whose diagonal entries are 



 
 Mohamed A. El-Shorbagy et al, Journal of Global Research in Mathematical Archives, 1(2), February 2013, 86-97 

 

 

JGRMA 2013, All Rights Reserved    

 

1     if   0,

0     if   0.
i

Ci x
w x

Ci x
                                                                                (10) 

Using this matrix, the Problem defined in Eq. (9) can be transformed to the following equality constrained optimization problem: 

minimize        

subject to       1 2 0,

                      0.

T

f x

Ci x W x Ci x

Ce x

                                                                   (11) 

The above problem can be rewritten as: 

minimize       

subject to       0,

f x

h x
                                                                                   (12) 

where h x = [Ce x  1 2 0
T

Ci x W x Ci x ].  

The Lagrangian function associated with problem defined in (12) is given by 

, T

k k k k kL x f x h x                                                                              (13) 

where 
k   is the Lagrange multiplier vector associated with equality constraint kh x  . 

The augmented Lagrangian is the function 
2

, ; , ,kx r L x r h x                                                                           (14) 

where r > 0 is a parameter usually called the penalty parameter. 
The reduced Hessian approach is used to compute a trial step 

kd . In this approach, the trial step 
kd  is decomposed into two 

orthogonal components; the normal component 
n

kd  and the tangential component
t

kd . The trial step 
kd  has the form 

n t

k k k kd d Z d , where 
kZ  is a matrix whose columns form an orthonormal basis for the null space of 

T

kh x .  

We obtain the normal component 
n

kd  by solving the following TR sub-problem: 

21
minimize        

2

subject to       ,  

T n

k k

n

k

h x h x d

d

                                                                       (15) 

for some 0,1 .   

Given the normal component 
n

kd , we compute the tangential component 
t t

k k kd Z d  by solving the following TR sub-problem: 

 
2

2

1
minimize        ,

2

subject to       ,

TT
T n t t T t

k x k k k k k k k

t n

k k k

Z L x H d d d Z H Z d

Z d d

                                                 (16) 

Once the trial step is computed, it needs to be tested to determine whether it will be accepted or not. To do that, a merit function is 
needed. We use the augmented Lagrangian function (14) as a merit function. To test the step, we compare the actual reduction in 
the merit function in moving from 

kx  to 
k kx d  versus the predicted reduction.  

The actual reduction in the merit function is defined as: 
2 2

1 1 1, , ,.k k k k k k k kAred L x L x r h x h x                                                     (17) 

The predicted reduction in the merit function is defined as: 
221

, + ;
2

T T TT T

k x k k k k k k k k k k k k k k kPred L x d d H d h x h x d r h x h x h x d            (18) 

where 1 .k k k  

If 0 ,k kAred Pred  where 0 0,1  is a small fixed constant, then the step is rejected. In this case, the radius of the TR 
k

 

is decreased by setting 3k kd , where 3 0,1 , and another trial step is computed using the new trust-region radius. If 

2k kAred Pred , where 
2 0 , then the step is accepted and set the TR as 1 max min 1min , max ,k k . If 

0 2 ,k kAred Pred  then the step is accepted and set the TR as 1 minmax ,k k . Finally, the algorithm is terminated 

when either 1kd  or 2 ,T

k x k kZ L h  for some 
1 2, 0 . The pseudo code of TR stage showing in Fig. 3. 

 

Choose 
1 2 0 1 2 3,  ,  ,  ,  ,  ,  

0 max min, ,  such that 
1 0 , 

2 0,  
3 10 1 ,  

0 20 1,  
2 0,  and 

min 0 max
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For each point N 
0

nx  , compute 
0W , 0

n nH  , and set 0k . 

If  2

T

k x k kZ L h  end for 

Solve the sub-problem (15) to give the normal component 
n

kd  

Solve  the sub-problem (16) to give the tangential component 
t t

k k kd Z d  

Compute the trial step 
n t

k k k kd d Z d  

If  2kd  end for 

Compute 
kAred and 

kPred  

While 0k kAred Pred 3k kd compute a new trial step 
kd  

If 0 2,k kAred Pred  then 
1k k kx x d 1 minmax ,k k . 

Else 2,k kAred Pred then 
1k k kx x d 1 max min 1min , max ,k k . 

Update 
1 1,k kH W , and set 1k k  

Figure 3.  The pseudo code of TR stage  

PSO stage 

In this stage a homogeneous PSO for MOOP (see [27]) is proposed with a decreasing constriction factor to restrict velocity of the 
particles and control it [28]. In homogeneous PSO one global repository concept is proposed for choosing pbest and gbest, this 
means that each particle has lost its own identity and treated simply as a member of social group. The procedure of the PSO stage is 
as follows. 
Step 1: Initialization 

All non-dominated points (which obtained by applying TR stage) chosen as particles position 
t

ix .  

Store non-dominated particles in Pareto repository. If the specific constraint doesn’t exist for a repository, the size of the repository 
is unlimited. 
Step 2: Evaluation 
Evaluate the MO fitness value of each particle and save it in a vector form. 
Step 3: Floating 
Two optimal solutions are chosen randomly for pbest and gbest from the repository.  
Determine the new position of each particle with Eqs. (7) and (8). 
Step 4: Repairing of particles: 

Where the particle i starts at position 
t

ix  with velocity 
t

iv  in the feasible space, the new position 
1t

ix  depends on velocity 
1t

iv , so 

we introduce a modified constriction factor (i.e., decreasing constriction factor) 

2

2
;

2
                                                                                      (19) 

where,  is the age of the infeasible particle (i.e., how long it is still infeasible) and it is increased with the number of failed trials to 

keep the feasibility of the particle. 
The new modified positions of the particles are computed as:  

1 1 .t t t

i i ix x v                                                                                        (20) 

Step 5: Selection and update the repository 
Check the Pareto optimality of each particle. If the fitness value of the particle is non-dominated when it compared to the Pareto 
optimal set in a repository, save it into the Pareto repository. 
In the Pareto repository, if a particle is dominated from new one, then discard it. 
Step 6: Repeat 
Repeat again step 2 to step 5 until the number of generation reaches to given t . The pseudo code of PSO stage showing in Fig. 4. 
 

Store non-dominated solution in Pareto repository 

Chose non-dominated solution as position of particles 
t

ix . 

Initialize parameters for PSO 1 2,  ,  ,  t

iv w c c . 

While (number of iterations, or the stopping criterion is not met) 
Chosen randomly pbest and gbest from the repository.  

Update particles velocity  
1t

iv  and position 
1t

ix  according to equation (7) and equation (8) of all particles. 

Repair the unfeasible particle according to equation (20). 
Evaluate fitness of particle swarm 
Selection and update the repository 
End while 
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Figure 4.  The pseudo code of PSO stage. 

ENGINEERING COMPONENT DESIGN PROBLEMS 

In the following, we discuss three engineering component design problems, two-bar truss design, gear train design, and air-cored 
solenoid design [6,7]. We have kept the proposed approach parameters same in all problems as is shown in Table I (see [28,29,30]). 
The algorithm is coded in MATLAB 7.2 and the simulations are run on a Pentium 4 CPU 900 MHz with 512 MB memory capacity.  

Table I.  The Parameter Adopted In The Implementation Of The Proposed Algorithm 

Parameter Value Parameter Value 

N  20-50 max
 105

0
 

1
, 

2
 10-7 min

 10-3 

0
 0 PSO iteration 300 

1
 2 w 0.6 

2
 0.25 c1 2.8 

3
 0.25 c2 1.3 

0
 

min1,1.5   15 

Two-bar truss design 

This problem was originally studied using NSGA-II [6]. The truss (Fig. 5) has to carry a certain load without elastic failure. Thus, in 
addition to the objective of designing the truss for minimum volume (which is equivalent to designing for minimum cost of 
fabrication), there are additional objectives of minimizing stresses in each of the two members AC and BC. We construct the 
following two-objective optimization problem for three variables y (vertical distance between B and C in m), x1 (length of AC in 
m) and x2 (length of BC in m): 

 
Figure 5.  The two-bar truss is shown. 

 

2 2

1 1 2

2

5

1 2

Min                16 1

Min                max ,

subject to       max , 1 10

                       1 3   and   0 , 0.01

AC BC

AC BC

f x y x y

f

y x x

 

The stresses are calculated as follows: 

2 2

1 2

20 16 80 1
             AC BC

y y

yx yx
 

Figure 6 shows the optimized front found using the proposed method (476 points) and NSGA-II. The solutions are spread by 
NSGA-II in the following range: (0.00407 m3, 99755 kPa) and (0.05304 m3, 8439 kPa), while by the proposed approach 
:(0.0040547 m3, 99599 kPa) and (0.081623 m3, 8432.74 kPa), which indicates the power of proposed approach compared to 
NSGA-II.  
What is also important that all these solutions have been found in just one simulation run of our approach. From the figure below, 
we can see that our approach solutions are better than NSGA-II solutions, both in terms of closeness to the optimum front and in 
their spread. 
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Figure 6.  Optimized solutions obtained using the proposed approach (left) and NSGA (right) for the two-bar truss problem. 

 
If minimization of stress is important, the proposed approach finds a solution with stress as low as 8432.74 kPa, where as NSGA-II 
method has found a solution with minimum stress of 8439 kPa. On the other hand, If minimization of volume is important, the 
proposed approach finds a solution with volume as low as 0.0040547 m3, where as NSGA-II method has found a solution with 
minimum stress of 0.00407 m3. The following Table shows the best maximum stress and best volume obtained by proposed 
algorithm. 
 

Table II.  The Best Maximum Stress And Best Volume Obtained By The Proposed Algorithm 

 1
x  

2
x  y  

1
Volumef  

2
Maximum stressf  

Min. Maximum stress 0.01 0.01 3 0.081623 8432.74 
Min. Volume 0.00044177 0.00091105 2.0413 0.0040547 99599 

 

Gear train design  

A compound gear train is to be designed to achieve a specific gear ratio between the driver and driven shafts (Fig. 7).  
The objective of the gear train design is to find the number of teeth in each of the four gears so as to minimize (i) the error between 
the obtained gear ratio and a required gear ratio of 1/6.931 and (ii) the maximum size of any of the four gears. Since the number of 
teeth must be integers, all four variables are strictly integers. By denoting the variable vector x=(x1; x2; x3; x4)= (Td; Tb; Ta; Tf), 
we write the two-objective optimization problem: 

2

1 2

3 4

1 2 3 4

3

1

2

1 2 4

Min                

Min                max

subj

1

6.931

, , ,

, , ,

                      all ’s are integers

ect to       12 0

.

6

i

x x

x x

x x x x

x x x x

x

f

f  

 
   

 
Figure 7.  A compound gear train is shown. 

Figure 8 shows the obtained optimized solutions by our approach (22 point) and NSGA-II [6], while Fig. 9 shows the non-
dominated front obtained using the proposed approach. Table 3 shows the best error and the best maximum size obtained by 
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proposed algorithm as compared to NSGA-II. It can be deduced that the proposed algorithm finds comparable minimum of 
maximum size to NSGA-II. 
 
 

  
Figure 8.  Optimized solutions obtained using the proposed approach (left) and NSGA (right) for the gear train design problem. 

 

  

 
Figure 9.  Non-dominated front obtained by the proposed approach for the gear train design problem 

Table III.  The Best Error And The Best Maximum Size Obtained By Proposed Algorithm And NSGA-II 

 NSGA-II 
Proposed 
approach 

 NSGA-II 
Proposed 
approach 

Best Error 1.83 (10-8) 7.5028e-005 
Corresponding 

Error 
2.47 (10-4) 26 

Corresponding 
Max. Diameter 

37 35 
Best Max. 
Diameter 

30 12 

1
x  12 14 1x

 
12 12 

2
x  12 13 

2x
 

12 12 

3
x  27 35 

3x
 

30 12 

4
x  37 34 4x

 
30 12 
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 Shape design of an air-cored solenoid 

The multiobjective shape optimization of a coreless solenoid with rectangular cross section a × b and a mean radius c (see Fig. 10) 
is tackled [7]. If the electric current is uniformly distributed over the cross section, it can be shown that if the number of turns (N) of 
the solenoid is given, the inductance L[μH] can be approximated from 

2 231.49

9 6 10

a N b
L

a b a b
 

 

 
 

Figure 10.  Cross section of the solenoid and design variables 

This multiobjective design problem can then be formally defined in the following two terms: maximize the inductance L(a, b, c) and 
minimize the volume V(a, b, c) for the given length k1 = 10 m and k2 = 10−6 m2 of the current carrying wire. In order to simplify 
the analysis, two variables, a and b, are considered. Correspondingly, the computation of L and V are simplified, respectively, to 

2 2

1

1 2

1 2

31.49 4

9 6 5

k b
f

a b k k ab
 

2 22

1 2 1 2

2 24 24

k k k ka b
f

a b
 

Now, the problem reads: maximize 1 ,f a b  and minimize 2 ,f a b  subject to 

1 2 ,     0,0.1 ,     0,0.3 .
4

k k
a a b

b
 

Despite the simplicity of formulas for both objective functions, the multiobjective optimization problem is not trivial and cannot be 
tackled analytically. The searched Pareto front using the proposed algorithm and using [7] are illustrated in Fig. 11. Clearly, the 
proposed algorithm produces a better uniform sampling of the Pareto front for this application (928 point ) than it obtained by [7]. 
The following Table shows the best volume and best Inductance obtained by proposed algorithm. 
 

 
 

Figure 11.  Optimized solutions obtained using the proposed approach (left) and [7] (right) for the Shape design of an air-cored solenoid 

Table IV.  The Best Volume And Best Inductance Obtained By Proposed Algorithm 

Solution a b 1
Inductancef  

2
Volume  f  

Best 
Volume 

0.037544 0.022582 129.441486 0.0001 

Best 
Inductance 

0.034158 0.022741 129.803667  

 
The table shows that a wide variety of optimal solutions have been obtained. Solutions in [7] are not as good as our approach 
solutions. 

http://www.sciencedirect.com/science/article/pii/S0378779610003287#fig0050
http://www.sciencedirect.com/science/article/pii/S0378779610003287#bib0035
http://www.sciencedirect.com/science/article/pii/S0378779610003287#fig0055
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CONCLUSION 

In this paper, we have used a new approach for finding multiple Pareto-optimal solutions in a number of engineering design 
problems. In the proposed approach, a reference point based MOO using a Hybrid between TR algorithm and PSO. In this 
approach, we introduced an integration between TR and PSO to improve the quality of the founded solutions,  and also to ensure 
faster convergence to the Pareto optimal solution. TR has provided the initial set (close to the Pareto set as possible and the 
reference point of the DM) followed by PSO to improve the quality of the solutions and get all the points on the Pareto frontier. 
The results on three engineering design problems show that a wide spread of solutions have been obtained. In all problems, the 
proposed approach finds a front better and wider than that found by other approaches. The study are encouraging and suggests 
immediate application of the proposed method to more complex engineering problems. 
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