
Volume 1, No. 2, February 2013 

Journal of Global Research in Mathematical Archives 

RESEARCH PAPER 

Available Online at http://www.jgrma.info 
 

JGRMA 2013, All Rights Reserved            

HEAT TRANSFER IN MHD BOUNDARY LAYER FLOW OVER A SHRINKING 

SHEET WITH RADIATION AND HEAT SINK 

Chandaneswar Midya 

Department of Mathematics, Ghatal Rabindra Satabarsiki Mahavidyalaya,  

Paschim Medinipur, West Bengal - 721212, India 

Email: c_midya@yahoo.com 

 

Abstract : In this work, the effect of radiation on heat transfer of an electrically conducting fluid flow over a linearly shrinking 

surface subject to heat sink and magnetic field applied normal to the plane of the flow is investigated analytically. The governing 

boundary layer equations for fluid flow and energy are reduced into ordinary differential equations by means of similarity 

transformations. Closed form exact solutions of the reduced energy equation have been obtained for both prescribed power-law 

surface temperature (PST) and power-law wall heat flux (PHF) boundary conditions and these solutions are valid for all M > 1, 

where M is the magnetic interaction parameter.  It is found that the temperature within the fluid is reduced significantly with the 

increasing values of radiation parameter, Prandtl number, heat sink and magnetic field parameters for both PST and PHF cases. 

Some solutions involving negative temperature values are also noticed. In some cases, temperature overshoot near the wall is also 

observed. 
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NOMENCLATURE 

a   proportionality constant of sheet velocity 

cp specific heat at constant pressure 

f    non-dimensional stream function 

p   wall temperature power index 

n   wall temperature heat flux power index 

Pr  Prandtl number 

qw wall heat flux 

T   temperature of the fluid 

Tw temperature of the wall of the surface 

T∞ free-stream temperature 

u   velocity component along the sheet 

v   velocity component normal to the sheet 

x   distance along the sheet 

y   distance normal to the sheet 

Q volumetric rate of heat generation / absorption 

qr    radiative heat flux 

M   magnetic field parameter 

 

Greek symbols 

   Parameter related to suction 

ξ   transformation parameter 

   Similarity variable 

κ   coefficient of thermal conductivity 

μ   dynamic viscosity 

   Kinematic viscosity 

ρ   density of the fluid 

   Conductivity of the fluid 

θ   non-dimensional temperature (PST case) 

ω   non-dimensional temperature (PHF case) 

λ   heat source or sink parameter

 

 

INTRODUCTION 

 

The boundary layer flow of an incompressible viscous fluid over a shrinking sheet has received considerable attention of modern 

day researchers because of its increasing application to many engineering systems. Wang (1990) first pointed out the flow over a 

shrinking sheet when he was working on the flow of a liquid film over an unsteady stretching sheet. Later, Miklavcic and Wang 

(2006) obtained an analytical solution for steady viscous hydrodynamic flow over a permeable shrinking sheet. Then, Hayat et al. 

(2007) derived both exact and series solution (using HAM) describing the magnetohydrodynamic boundary layer flow of a second 

grade fluid over a shrinking sheet. The problem of stagnation flow towards a shrinking sheet was studied by Wang (2008). 

Nadeem and Awais (2008) studied thin film flow of an unsteady shrinking sheet through porous medium with variable viscosity. 

Muhaimin et al. (2008) investigated the effects of heat and mass transfer on MHD boundary layer flow over a shrinking sheet in 
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the presence of suction. They obtained numerical solution using Runge Kutta Gill method. Viscous flow over an unsteady 

shrinking sheet with mass transfer was studied by Fang and Zhang (2009a). Nadeem and Hussain (2009) used homotopy analysis 

method to study the viscous flow on a nonlinear porous shrinking sheet. Fang and Zhang (2009b) solved the Full N-S equation 

analytically for two dimensional MHD viscous flow due to a shrinking sheet. Fang and Zhang (2010) recently investigated the 

heat transfer characteristics of the shrinking sheet problem with a linear velocity. Later on, Noor et al. (2010) studied the MHD 

viscous flow due to shrinking sheet using Adomian decomposition Method (ADM) and they obtained a series solution. Sajid and 

Hayat (2009) applied homotopy analysis method for the MHD viscous flow due to a shrinking sheet. Midya (2012a) studied the 

magnetohydrodynamic viscous flow and heat transfer over a linearly shrinking porous sheet. Effect of chemical reaction, heat and 

mass transfer on nonlinear boundary layer past a porous shrinking sheet in the presence of suction was studied numerically by 

Muhaimin et al. (2010). Midya (2012b) obtained a closed form analytical solution for the distribution of reactant solute in a MHD 

boundary layer flow over a shrinking sheet. Very recently, flow and mass transfer over a viscoelastic fluid was investigated in the 

presence of chemical reaction by Midya (2012c). 

 

Again, thermal radiation effect on boundary layer flow and heat transfer over a moving surface has important applications in 

modern industrial and technological equipments. Many processes in engineering areas occur at high temperatures and knowledge 

of radiation heat transfer becomes very important for the design of the pertinent of equipment. High temperature plasmas, cooling 

of nuclear reactors, liquid metal fluids, power generation systems, gas-turbines and various propulsion devices for air craft, 

missiles, satellites and space vehicles are examples of such engineering areas. Viskanta and Grosh (1962) dicsovered the effects of 

thermal radiation on boundary layer flow and heat transfer over a wedge in an absorbing and emitting media. The radiation effect 

on fluid flow and heat transfer in different physical contexts was then investigated by Ali et al. (1984), Elbashby (1998), Ouaf 

(2005), Devi and Kayalvizhi (2010), Rajput and Kumar (2012) and others. Recently, Ali et al. (2010) obtained a numerical 

solution of the unsteady flow and heat transfer past an axisymmetric permeable shrinking sheet with radiation effect. The purpose 

of this paper is to investigate analytically the effects of radiation on the magnetohydrodynamic viscous incompressible fluid flow 

and heat transfer over a linearly shrinking sheet in the presence of heat sink. Both prescribed power-law wall temperature and 

power-law wall heat flux are considered as thermal boundary conditions. Closed form exact solutions of the boundary layer 

energy equation are obtained for both the cases under certain conditions. Heat transfer distributions are presented and discussed 

for various controlling parameters. 

 

MATHEMATICAL FORMULATION 

 

Consider the flow of an electrically conducting incompressible fluid over a flat plate coinciding with the plane y = 0. The flow is 

confined to y > 0. Two equal and opposite forces are applied opposite to the x -axis so that the wall is shrinked keeping the origin 

fixed. A magnetic induction B0 is applied perpendicular to the shrinking surface. The shrinking sheet velocity is proportional to 

the distance i.e. uw = -ax, (a > 0). Using boundary layer approximation and neglecting the induced magnetic field (by assuming the 

magnetic Reynolds number Rm for the flow to be very small i.e. Rm << 1 [see Midya et al. (2003)], the equations for steady two-

dimensional flow and the reactive temperature equation can be written in usual notation as 

         (1) 

     (2) 

    (3) 

where u and v are the components of velocity respectively in the x and y directions, T is the temperature, T∞ is the temperature far 

from the sheet,  is the fluid density (assumed constant),  is the electrical conductivity of the fluid,  (= μ/ ) is the coefficient of 

fluid viscosity, D is the mass diffusion coefficient, κ is the thermal conductivity, qr is the radiative heat flux, Q is the volumetric 

rate of internal heat generation / absorption. 

The boundary conditions for the velocity components and temperature are given by 

         (4) 

and 

                          (5) 

where Tw is the wall temperature. 

Now, Rosseland's approximation for radiation gives , where * is the Stefan-Boltzmann constant, k1 is 

the absorption coefficient (see Brewster (1972)). It is assumed that the temperature variation within the flow is such that T4 may 

be expanded in a Taylor's series. Expanding T4  about T∞  and neglecting higher order terms, we have .   

Therefore, Eq. (3) reduces to 
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       (6) 

 

SOLUTION OF THE PROBLEM 

 

Equations (1-2) admit self-similar solutions of the form 

        (7) 

where f is the dimensionless stream function and  is the similarity variable. Substituting these, Eqs. (2) become 

      (8) 

where  is the magnetic interaction parameter. 

The boundary conditions are 

      (9) 

There is an analytical solution (see Fang and Zhang (2009b)) for the equation with the boundary conditions given by 

       (10) 

It is, therefore, seen that there is an exponential solution for this equation for any M > 1. 

The non-dimensional horizontal velocity component is given by 

    (11) 

The shear stress at the wall is denoted by τw and is defined as 

    (12) 

The skin friction coefficient Cf at the wall is obtained as 

    (13) 

 

HEAT TRANSFER ANALYSIS 

 

First, we consider power-law surface temperature (PST) as surface boundary conditions and then power-law wall heat flux (PHF) 

case will be discussed. 

 

POWER-LAW SURFACE TEMPERATURE (PST) CASE 

 

In this case the boundary conditions are 

      at    y = 0                        (14) 

T⟶T∞     at  y⟶∞                                        (15) 

Defining the non-dimensional temperature θ( ), Prandtl number Pr and heat source / sink parameter λ as 

                (16) 

Using Eq. (7), we have from Eq. (6) 

    (17) 

Here D=3R/(3R+4) and R is the thermal radiation parameter given by R=κk1/4
*T∞

3. 

The boundary conditions become 

                       (18) 

Substituting the solution for the momentum transport the above Eq.(17) reduces to 

        (19) 

Now, let us introduce a new variable  so that the above equation transforms to 

              (20) 

The boundary conditions (18) then become 

                         (21) 

Now, transforming the above equation (20) into confluent hypergeometric equation, we can obtain the solution (see Abramowitz 

and Stegun (1972)) given by 
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          (22) 

where   and (a/,b/,x) is the confluent hypergeometric function of the first 

kind or Kummer function. 

Now, because of the boundary condition θ(0)=0,  should be positive and hence λ should be negative i.e. heat sink is needed. 

Thus, in order to get a boundary layer solution for energy equation, we have to consider the heat sink case only. For heat source 

case i.e., for λ > 0, the boundary layer solution of the energy equation does not exist although the solution for momentum equation 

exists. 

Therefore, 

                (23) 

The dimensionless wall temperature gradient θ/(0) is obtained as 

.              (24) 

 

POWER-LAW HEAT FLUX (PHF) CASE 

 

Here the boundary conditions become 

   at   y=0                                 (25) 

T⟶T∞  at   y⟶∞ 

where E is a constant, n the heat flux power index, qw is the wall heat flux. 

Defining the non-dimensional temperature by 

                          (26) 

Using Eq. (7), we have from Eq. (6) 

                 (27) 

The boundary conditions become 

              (28) 

Substituting the solution for the momentum transport the above Eq.(27) reduces to 

           (29) 

Now, let us introduce a new variable  so that the above equation transforms to 

                       (30) 

The boundary conditions (28) then become 

                          (31) 

Now, the solution of above equation (30) with the boundary conditions is 

            (32) 

 

As in the PST case, the boundary layer solution for energy equation can be obtained in heat sink case only. 

The solution then becomes 

        (33) 

in terms of . 

Therefore, 

     (34) 

 

RESULTS AND DISCUSSION 

 

Some examples for temperature distributions in the fluid are presented here for certain values of the controlling parameters.  

 

POWER-LAW SURFACE TEMPERATURE (PST) CASE 
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Figure 1(a) presents the influence of radiation parameter R on the temperature profile for Pr = 0.5,  = 2.83 (M = 3), λ = -0.2 and 

p = 0. It is observed that increasing radiation parameter R is to decrease temperature throughout the boundary layer. This can be 

explained by the fact that the increase of radiation parameter R implies the release of heat energy from the flow region by means 

of radiation. 

 

The temperature profiles for power-law surface temperature case are depicted in Figure 1(b) for different values of the Prandtl 

number Pr (Pr = 0.5, 1.0, 1.5). Here the radiation parameter is taken as R = 0.6, M = 2 (  = 1.73), λ = -0.3 and power index p = 2. 

It is seen that the increase of Prandtl number results in the decrease of temperature distribution. The increase of Prandtl number 

means slow rate of thermal diffusion. Because of reduced thermal conductivity, there would be a thinning of the thermal boundary 

layer and this leads to the decrease in the temperature. 

 

The temperature profiles are depicted in Figure 1(c) for different values of the heat sink parameters λ (λ = -0.1, -0.2, -0.3). Here 

the radiation parameter is taken as R = 0.8, M = 2, power index p = 1 and Pr = 0.6. It is seen that the temperature within the fluid 

sharply decreased if λ is increased. This is logical because internal heat energy absorption results in a decrease of heat transfer 

close to the shrinking sheet and this will reduce more around the flow along the sheet.  

 

Figure 1(d) represents the temperature distribution for various values of the power index p. Here Pr = 0.9,  = 1.118 (M = 1.5), λ 

= -0.2 and R = 0.7. When p = 0, the temperature distribution is strictly decreased and ultimately tends to zero for higher values of 

. But for p = 2, the temperature near the wall is increased first and then decreased for higher values of . Thus a temperature 

overshoot at the wall is observed in this case. Similar behavior is also seen for the case p = 4. 

 

 
 

Figure 1(a) Variation of temperature for several 

values of R with M = 3 (  = 2.83), Pr = 0.5, λ = -

0.2$ and p = 0. 

 

 
 

Figure 1(b) The temperature distribution for several 

values of Pr with M = 2 (  = 1.73), R = 0.6, λ = -

0.3$ and p = 2. 

 

 
 

Figure 1(c) The temperature profiles under 

different values of λ for Pr = 0.6, R = 0.8, M = 2 (  

= 1.73) and p = 1. 

 

 

 
 

Figure 1(d) The temperature profiles for M = 1.5 (  

= 1.118), Pr = 0.9, λ = -0.2$ and R = 0.7 under 

different values of p.

The temperature profiles are depicted in Figure 1(e) for different values of magnetic parameter M (M = 1.1, 1.5, 

2.0). Here the radiation parameter is taken as R = 0.7, Pr = 0.9, λ = -0.2 and power index p = 1. We notice that 

the effect of magnetic parameter is to decrease the temperature in the boundary layer. 
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POWER-LAW HEAT FLUX (PHF) CASE 

 

The impact of radiation parameter R on the temperature field is presented in Figure 2(a) for Pr = 0.8, λ = -0.2, M 

= 2 and n = 0. From the figure, it is noticed that for increasing R, the temperature within the fluid decreases. 

This result is quite normal because increase in radiation enhances the rate of release of heat from the flow field. 

 

Temperature distribution for various values of Prandtl number Pr is shown in Figure 2(b) for λ = -0.2, M = 2, R 

= 0.9 and n = 0. Here three values of Pr considered are 0.5, 1.0 and 1.5. It is observed that with increasing Pr, 

the dimensionless temperature profile as well as thermal boundary layer thickness decrease. An increase in 

Prandtl number means a decrease of fluid thermal conductivity which causes a decrease in temperature.  

 

The temperature field for different values of the heat sink parameters λ (λ = -0.2, -0.3, -0.4) is depicted in Figure 

2(c). Here R = 0.8, Pr = 0.6, M = 2 and power index n = 1. It is noted from the figure that the dimensionless 

temperature ω(  ) decreases for increasing values of heat sink. The thickness of thermal boundary layer also 

reduces for the increase of heat sink. Physically, λ < 0 implies Tw > T∞ and there will be heat transfer from the 

flow region to the wall. This result is very much significant for the flow where heat transfer is given prime 

importance. 

 

Figure 2(d) represents the temperature distribution for various values of the power index n. Here Pr = 0.9, λ = -

0.1,  = 1.73 (M = 2) and R = 0.6. When n = 0, the temperature distribution is seen to be positive. But for n = 1 

and 2, the temperature becomes negative. In reality, these negative temperature values may not be applicable.  

 

The temperature profiles are depicted in Figure 2(e) for different values of magnetic parameter M (M = 1.5, 2, 

3) for R = 0.7, Pr = 0.9, λ = -0.1 and power index n = 0. Here, the increase of magnetic force causes significant 

decrease of thermal boundary layer thickness. 

 

 

 
 

Figure 1(e) The temperature profiles for several 

values of M with R = 0.7, Pr = 0.9, λ = -0.2 and p = 

1. 

 

 

 
 

Figure 2(a) Variation of temperature for several 

values of R with M = 2 (  = 1.73), Pr = 0.8, λ = -

0.2 and n = 0. 
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Figure 2(b) The temperature distribution for several 

values of Pr with M = 2 (  = 1.73), R = 0.9, λ = -

0.2 and n = 0. 

 

 
 

Figure 2(c) the temperature profiles under different 

values of λ for Pr = 0.6, R = 0.8, M = 2 (  = 1.73) 

and n = 1. 

 

 
 

Figure 2(d) The temperature profiles for M = 2 (  

= 1.73), Pr = 0.9, λ = -0.1 and R = 0.6 under 

different values of n. 

 

 

 
 

Figure 2(e) The temperature profiles for several 

values of M with R = 0.7, Pr = 0.9, λ = -0.1 and n = 

0.

 

CONCLUSIONS 

 

MHD viscous fluid flow and heat transfer over a linearly shrinking surface in the presence of radiation and heat sink is 

investigated analytically. The exact analytical solution of the boundary layer equation for fluid flow is used to solve the boundary 

layer equation for energy. Closed form exact solutions of the energy equation have been obtained for both power-law surface 

temperature and power-law heat flux cases. It is seen that these solutions are valid for all M > 1, where M is the magnetic 

interaction parameter. The effects of radiation parameter R, Prandtl number Pr, heat sink parameter λ on the temperature 

distribution are studied. The temperature overshoot at the wall is observed for some cases. For some positive power index, the 

solution has negative non-dimensional temperatures. 
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