

Volume 1, No. 1, January 2013

Journal of Global Research in Mathematical Archives

RESEARCH PAPER

Available Online at http://www.jgrma.info

Further properties on strongly generalized star semi- continuous mappings

A.I. EL-Maghrabi¹ and S.S. AL-Ahmadi²

¹Department of Mathematics , Faculty of Science, Taibah University, AL-Madinah AL-Munawarh, P.O. Box, 344, AL-Madinah, K.S.A.

E-mail: amaghrabi@taibahu.edu.sa, alahmadi1428@hotmail.com.

²Department of Mathematics, Faculty of Science, Kafr EL-Sheikh University Kafr EL-Sheikh,

EGYPT.

E-mail: aelmaghrabi@yahoo.com

Abstract: The aim of this paper is to introduce and study the class of strongly generalized star semi – closed sets which is weaker than semiclosed sets (Crossly and Hildebrand, 1971) and stronger than both strongly generalized semi-closed sets (El-Maghrabi and Nasef, 2008) and semi generalized-closed sets (Bhattacharya and Lahiri, 1987). Also, through this paper some concepts such as: strongly generalized star semi – continuous, strongly generalized star semi –closed and strongly generalized star semi –homeomorphism maps are discussed and investigated via a strongly generalized star semi –closed set.

(1991) AMS Math. Subject Classification: 54 A05; 54 D10

Keywords and Phrases: strongly generalized star semi –closed sets, strongly generalized star semi – continuous, strongly generalized star semi – irresolute, strongly generalized star semi – homeomorphism mappings.

INTRODUCTION

In 1970, Levine [15] introduced the concept of generalized closed (briefly, g-closed) sets of a topological space. Bhattacharrya and Lahiri [4] defined and studied the notion of sg- closed sets. In 1990, Arya and Nour [2] introduced the concept of gs- closed sets. Veera Kumar [21] defined and studied the notion of g^* -closed sets. The notion of g^*s_s - closed sets was defined by El-Maghrabi and Nasef [12]. The purpose of the present paper is to define and investigate the concept of strongly generalized star semi-closed sets. Some notions are introduced and investigated via a strongly generalized star semi-closed set such as : strongly generalized star semi-closed set semi-closed and strongly generalized star semi-closed star semi-closed star semi-closed and strongly generalized star semi-closed st

PRELIMINARIES

Throughout this paper, spaces always mean topological spaces on which no separation axiom is assumed unless explicitly stated. Let X be a space and A be a subset of X. The closure of A and the interior of A are denoted by cl (A) and int(A) respectively. A subset A of X is said to be regular-open[19] (resp. semi - open[14], pre-open[17],Q-set[13]) if A int(cl(A)) (resp. $A \subseteq cl(int(A))$, $A \subseteq int(cl(A))$, int (cl(A)) cl(int(A))). A subset A of X is said to be semi - closed if X - A is semi - open or, equivalently, if $int(cl(A)) \subseteq A$ [8]. The family of all semi - open (resp. semi-closed) sets will be denoted by $SO(X,\tau)$ (resp. $SC(X,\tau)$). The intersection (resp. the union) of all semi- closed (resp. semi-open) sets containing (resp. contained in) A is called the semi - closure (resp. the semi - interior) of A and will be denoted by s - cl(A) (resp. s - int(A)).

Definition 2.1. A subset of a space (X, τ) is called:

- 1- a generalized closed (briefly, g-closed) [15] set if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open,
- 2- a semi generalized-closed (briefly, sg-closed) [4] set if $s cl(A) \subseteq U$ whenever $A \subseteq U$ and U is semi- open,
- 3- a generalized semi-closed (briefly, gs-closed)[2] set if $s cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open,
- 4- a strongly generalized semi-closed (briefly, g*s-closed) [12] set if $s-cl(A) \subseteq U$ whenever $A \subseteq U$ and U is g-open,

5- a g^* -closed [21] set if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is g-open.

Remark 2.1. The complement of g-closed (resp.sg- closed, gs-closed, g^* -closed, g^* -closed) is called g-open (resp. sg-open, gs-open, g^* -open).

Definition 2.2. A mapping $f: (X, \tau) \to (Y, \sigma)$ is called g-continuous[3] (resp. sg- continuous [20], gs- continuous [11], g^* - continuous [21]) if $f^{-1}(V)$ is g-closed (resp. sg-closed, gs-closed, g^* -closed) in (X, τ) for every closed set V of (Y, σ) .

Definition 2.3. A mapping $f: (X,\tau) \rightarrow (Y,\sigma)$ is said to be:

- (i) g-closed [16] (resp. sg-closed [11], gs- closed [11]) if f(V) is g-closed (resp. sg-closed, gs-closed) in (Y, σ) for every closed set V of (X, τ) .
- (ii) g-open [16] (resp. sg-open [11]), gs- open [11]) if f(V) is g- open (resp. sg- open, gs- open) in (Y, σ) for every open set V of (X, τ) .

Definition 2.4. A bijective mapping $f:(X,\tau) \rightarrow (Y,\sigma)$ is said to be:

- (i) semi homeomorphism(B) [5] if f is semi-continuous and semi-open,
- (ii) semi generalized -homeomorphism[10] (briefly, sg- homeomorphism), if f is sg-continuous and sg-open,
- (iii) generalized semi-homeomorphism[10] (briefly, gs- homeomorphism), if f is gs-continuous and gs-open.

Lemma 2.1 [7,8,9]. If A and B are two subsets of X, then the following statements are hold:

- (i) s-cl (A) (resp. s- int (A)) is semi closed (resp. semi- open),
- (ii) A is semi closed (resp. semi open) iff A s-cl(A) (resp. A s-int(A)),
- (iii) s-cl(X-A) = X-s-int(A) and s-int(X-A) = X-s-cl(A),
- (iv) $A \subseteq s cl(A), s int(A) \subseteq A$,
- (v) s-cl(s-cl(A)) s-cl(A).

Corollary 2.1 [1]. Let A be a subset of a space (X, τ) . Then $s-cl(A) = A \bigcup int (cl(A))$.

3. More on strongly g*s-closed sets.

Definition 3.1 A subset A of a space X is called a strongly generalized star semi-closed (briefly, stronglyg*s-closed) set, if $s-cl(A) \subseteq U$ whenever $A \subseteq U$ and U is gs-open in (X,τ) .

A subset B of a space (X,τ) is called a strongly generalized star semi-open (briefly, stronglyg*s-open) set, if X-B is strongly generalized star semi-closed in (X,τ) .

Remark 3.1. The concepts of g-closed (resp. g^{*}-closed) and strongly g*s-closed sets are independent.

Example 3.1. If $X=\{a,b,c,d\}$ with two topologies τ_1 , τ_2 on X such that : $\tau_1=\{X, \phi, \{a,b\}\}, \tau_2=\{X, \phi, \{a\}, \{b,c\}, \{a,b,c\}\}$, then:

- (1) a subset $A=\{b\}$ of X on τ_1 is strongly g*s-closed but not g-closed and a subset $B=\{a,b,d\}$ of X on τ_1 is g-closed but not stronglyg*s-closed.
- (2) a subset C={a} of X on τ_2 is stronglyg*s-closed but not g*-closed and a subset D={b,d} of X on τ_2 is g*-closed but not strongly g*s-closed.

Remark 3.2. By Definition 3.1 and Remark 3.1, we obtain the following diagram.

However, the converses are not true in [2,9,12,21] and by the following examples .

Example 3.2. If $X = \{a,b,c,d\}$ with topologies τ_1 , τ_2 on X such that:

 $\tau_1 = \{X, \phi, \{c,d\}\}, \tau_2 = \{X, \phi, \{c\}, \{b,c,d\}\}, \text{ then a subset } A = \{a,b,c\} \text{ of } X \text{ on } \tau_1 \text{ is strongly } g^*s \text{ - closed but not semi-closed. While, a subset } B = \{a,c\} \text{ of } X \text{ on } \tau_2 \text{ is } g^*s \text{ - closed but not strongly } g^*s \text{ - closed.}$

Example 3.3. Let $X = \{a,b,c\}$ with topologies τ_1 , τ_2 on X such that

 $\tau_1 = \{X, \phi, \{a,b\}, \{c\}\}, \tau_2 = \{X, \phi, \{a\}, \{a,b\}\}$. Then, a subset C={a} of X on τ_1 is sg-closed but not stronglyg*s-closed. But a subset D = {a,c} of X on τ_2 is gs-closed but not stronglyg*s-closed.

Remark 3.3. The union of two stronglyg*s-closed sets need not be stronglyg*s-closed. Let X ={a,b,c,d} with topology τ ={X, ϕ , {a}, {b}, {a,b}}. Then, the subsets A={a} and B={b} are stronglyg*s-closed but their union is not stronglyg*s-closed.

Theorem 3.1. A subset A of a space (X, τ) is strongly g^{*}_{S} -closed if and only if every gs - open set G containing A, there exists a semi – closed set F such that $A \subseteq F \subseteq G$.

Proof. Necessity. Let A be a stronglyg*s-closed set, $A \subseteq G$ and G be gs – open. Then $s - cl(A) \subseteq G$. Set, s - cl(A) = F. Hence, there exists a semi – closed set F such that $A \subseteq F \subseteq G$. Sufficiency. Assume that $A \subseteq G$ and G is a gs – open set of X. Then by hypothesis, there exists a semi – closed set F such that

Sufficiency . Assume that $A \subseteq G$ and G is a gs – open set of X. Then by hypothesis, there exists a semi – closed set F such that $A \subseteq F \subseteq G$, therefore, $s - cl(A) \subseteq G$. So, A is stronglyg*s-closed.

Theorem 3.2. Let A be a strongly g*s-closed set of X. Then (s-cl(A))-A does not contain any non empty g - closed set. **Proof.** Let F be a g - closed set such that $F \subseteq (s-cl(A))-A$. Then $F \subseteq X-A$ this implies that $A \subseteq X-F$. Since, A is strongly g*s- closed and X-F is g - open, then $s-cl(A) \subseteq X-F$, that is $F \subseteq X-(s-cl(A))$, hence $F \subseteq s-cl(A) \cap (X-(s-cl(A))) \phi$. This shows that $F \phi$.

The converse of the above theorem may not be true as is shown by the following example. **Example 3.4.** In Example 3.1, if $A = \{a, b, d\}$ is a subset of X on a topology τ_2 , then $(s - cl(A)) - A = \{c\}$ does not contain any non empty g-closed set.

Corollary 3.1. Let A be a stronglyg*s-closed set of X. Then (s - cl(A)) - A does not contain any non empty gs - closed set. **Proof.** Obvious.

Corollary 3.2. Let A be a stronglyg*s - closed set. Then A is semi - closed if and only if (s - cl(A)) - A is gs - closed. **Proof**. Necessity. Assume that A is stronglyg*s - closed and semi - closed sets. Then s - cl(A) A and hence $(s - cl(A)) - A = \phi$ which is gs - closed.

Sufficiency. Suppose that s-cl(A)-A is gs - closed and A is stronglyg*s -closed. Then by Corollary 3.1, s-cl(A)-A does not contain any non empty gs - closed subset of X. Hence A is semi - closed.

Theorem 3.3. For each $x \in X$, then $\{x\}$ is gs- closed or its complement $X - \{x\}$ is strongly g^*s - closed.

Proof. Suppose that $\{x\}$ is not gs- closed. Then its complement is not gs- open. Since, X is the only gs- open set containing $X - \{x\}$, that is, $s - cl(X - \{x\}) \subseteq X$ holds. This implies that $X - \{x\}$ is stronglyg*s - closed.

Proposition 3. 1. If A is a strongly g^s -closed set and $A \subseteq B \subseteq s - cl(A)$, then B is strongly g^s - closed. **Proof.** Let $B \subseteq U$ and U be a gs- open set of X. Then $A \subseteq U$. Since , A is strongly g^s - closed , hence $s - cl(A) \subseteq U$, but $B \subseteq s - cl(A)$. Then $s - cl(B) \subseteq U$. Hence , B is strongly g^s - closed.

Proposition 3. 2. If (X, τ) is a topology space and $A \subseteq X$, then A is semi – closed, if one of the following two cases hold :

- $(1) \quad \ \ If A is stronglyg*s-closed and gs-open.$
- (2) If A is stronglyg*s-closed and open.

Theorem 3.4. Let A be a subset of a space X, the following are equivalent:

- (i) A is regular open,
- (ii) A is open and strongly g*s-closed.

Proof. (i) \rightarrow (ii). Let U be a gs-open set containing A and A be a regular-open set. Then, $A \bigcup int(cl(A))$ $A \subseteq U$. So, $s - cl(A) \subseteq U$ and therefore A is stronglyg*s-closed.

(ii) \rightarrow (i). Since, A is an open and a stronglyg*s-closed sets, then by Proposition 3.2(2), A is semi-closed. But, A is pre-open. Therefore, A is regular-open.

Theorem 3.5. If A is a subset of a space X, the following are equivalent:

- (i) A is clopen,
- (ii) A is open, a Q-set and stronglyg*s-closed.

Proof. (i) \rightarrow (ii). Since, A is clopen, hence A is both open and a Q- set. Let U be a gs-open set containing A. Then, $A \bigcup int (cl(A)) \subseteq U$ and so $s - cl(A) \subseteq U$. Hence, A is stronglyg*s-closed.

 $(ii) \rightarrow (i)$. Hence by Theorem 3.4, A is regular-open. Since, every regular-open set is open, then A is a Q-set, hence A is closed. Therefore, A is clopen.

Theorem 3.6. For a subset A of a space X, the following statements are equivalent :

(i) A is stronglyg*s - open,

(ii) For each gs-closed set $F \subseteq X$ contained in A, $F \subseteq s - int(A)$,

(iii) For each gs-closed set $F \subseteq X$ contained in A, there exists a semi -open set $G \subseteq X$ such that $F \subseteq G \subseteq A$.

Proof. (i) \rightarrow (ii). Let $F \subseteq A$ and F be a gs- closed set. Then $X - A \subseteq X - F$ which is gs-open. Hence, $s - cl(X - A) \subseteq X - F$. Therefore by Lemma 2.1, (iii), $F \subseteq s - int(A)$.

(ii) \rightarrow (iii). Let $F \subseteq A$ and F be a gs-closed set. Then by hypothesis, $F \subseteq s - int(A)$. Set $s - int(A) \subseteq G$, hence $F \subseteq G \subseteq A$.

(iii) \rightarrow (i). Let $X - A \subseteq U$ and U be a gs-open set .Then $X - U \subseteq A$ and by hypothesis, there exists a semi-open set G such that $X - U \subseteq G \subseteq A$, that is, $X - A \subseteq X - G \subseteq U$. Therefore, by Theorem 3.1, X - A is stronglyg*s-closed. Hence, A is stronglyg*s-open.

Lemma 3.1. Let $A \subseteq X$ be a stronglyg*s -closed set. Then s - cl(A) - A is stronglyg*s - open.

Proof. Let F be a gs- closed set such that $F \subseteq (s-cl(A)) - A$. Since A is stronglyg*s-closed, then by Corollary 3.1, F φ . Therefore, $\varphi \subseteq s-int(s-cl(A)-A)$. Hence, by Theorem 3.6, s-cl(A)-A is stronglyg*s - open.

4. Strongly g*s-continuous mappings.

Definition 4.1. A mapping $f: (X, \tau) \rightarrow (Y, \sigma)$ is called a strongly generalized star semi-continuous (briefly, stronglyg*s-continuous) mapping if the inverse image of each closed set in Y is stronglyg*s-closed in X.

Definition 4.2. A mapping $f: (X, \tau) \to (Y, \sigma)$ is called strongly generalized star semi-irresolute (briefly, strongly g*sirresolute) if, $f^{-1}(U)$ is strongly g*s-closed in (X, τ) , for every strongly g*s-closed set U of (Y, σ) .

Lemma 4.1. (1) Every semi- continuous mapping is stronglyg*s-continuous.

(2) Every strongly g*s-continuous mapping is sg- continuous (resp. gs-continuous).

Remark 4.1. The concept of stronglyg*s-continuous and g-continuous (resp. g^* -continuous) mappings are independent, as is shown by the following examples.

Example 4.1. Let X $\{a,b,c,d\}$, Y $\{a,b,c\}$ with two topologies $\tau_X \{X,\phi,\{a\}\}, \tau_Y \{Y,\phi,\{a\}\}$ and a mapping $f:(X,\tau_X) \rightarrow (Y,\tau_Y)$ is defined by f(a) b, f(b) c and f(c) f(d) a, then f is g-continuous but not strongly g^*s -continuous.

Example 4.2. If X Y $\{a,b,c\}$ with topologies.

- (i) $\tau_X = \{X, \varphi, \{a\}, \{b\}, \{a, b\}\}, \tau_Y = \{Y, \varphi, \{a\}, \{a, b\}\}$, then a mapping $f: (X, \tau_X) \to (Y, \tau_Y)$ which is defined by f(a) = c, f(b) = a and f(c) = b is stronglyg*s-continuous but not g-continuous.
- (ii) $\tau_X \{X, \varphi, \{a\}, \{b\}, \{a, b\}\}, \tau_Y \{Y, \varphi, \{b, c\}\}$, then a mapping $f: (X, \tau_X) \to (Y, \tau_Y)$ which is defined by f(a) b, f(b) a and f(c) c is stronglyg*s-continuous but not g*-continuous.
- (iii) $\tau_X \{X, \varphi, \{a\}, \{a, b\}\}, \tau_Y \{Y, \varphi, \{b, c\}\}$, then a mapping $f: (X, \tau_X) \to (Y, \tau_Y)$ which is defined by $f(a) \quad f(c) \quad a \text{ and } f(b) \quad b \text{ is } g^*$ continuous but not stronglyg*s-continuous.

Remark 4.2. By Lemma 4.1 and Remark 4.1, we have the following diagram.

The converses of this implication is not true in [6,11,14,21] and by the following examples.

Example 4.3. Let X Y {a,b,c}, with topologies τ_X {X, φ ,{a,b}}, τ_Y {Y, φ ,{b,c}} and a mapping $f:(X, \tau_X) \rightarrow (Y, \tau_Y)$ be defined by f(a) f(c) a and f(b) b. Then f is stronglyg*s- continuous but not semicontinuous.

Example 4.4. If X $\{a,b,c\}, \tau_X \{X, \varphi, \{a,b\}, \{c\}\}\)$, and a mapping $f:(X, \tau_X) \to (X, \tau_X)$ is defined as f(a) = a, f(b) = c and f(c) = b, hence f is gs- continuous and sg- continuous but not strongly g*s- continuous.

Theorem 4.1. A mapping $f: (X, \tau) \to (Y, \sigma)$ is strongly g^*s - continuous iff the inverse image of each open set in Y is strongly g^*s -open in X.

Proof. The necessity. Let $G \subseteq Y$ be an open set. Then, Y - G is closed, hence, by hypothesis, $f^{-1}(Y - G)$ is a strongly g^{*s} -closed set. Therefore, $f^{-1}(G)$ is strongly g^{*s} -open.

The sufficiency. Let $F \subseteq Y$ be a closed set. Then, Y - F is open, hence by hypothesis, $f^{-1}(Y - F)$ is a strongly g*s-open set. Thus $f^{-1}(F)$ is strongly g*s-closed. So, f is stronglyg*s- continuous.

Lemma 4.2. Every strongly g*s- irresolute mapping is strongly g*s-continuous.

Example 4.5. Let X Y $\{a,b,c\}$ with two topologies $\tau_X \{X,\phi,\{a\},\{a,b\}\}, \tau_Y \{Y,\phi,\{a,b\}\}$ and a mapping $f:(X,\tau_X) \rightarrow (Y,\tau_Y)$ be defined by $f(a) \ b$, $f(b) \ a$ and $f(c) \ c$. Then, f is strongly g*s-continuous but not strongly g*s- irresolute.

Remark 4.3. The composition of two strongly g^{s} - continuous mappings may not be strongly g^{s} - continuous the following example shows this fact.

Example 4.6. Let X Z {a,b,c} and Y {a,b,c,d} with the topologies τ_X {X, ϕ , {a}}, τ_Y {Y, ϕ , {a,c}}, τ_Z {Z, ϕ , {c}}, a mapping f from (X, τ_X) to (Y, τ_Y) is the identity map and a mapping g:(Y, τ_Y) \rightarrow (Z, τ_Z) is defined by g(a) a, g(b) g(d) b and g(c) c. Then, f and g are stronglyg*s- continuous, but g \circ f is not strongly g*s-continuous.

In the next theorem , we give the necessarily condition which satisfying the composition of two strongly g*s- continuous mappings is also strongly g*s- continuous.

Theorem 4.2. Let $f:(X, \tau_X) \to (Y, \tau_Y)$ and $g:(Y, \tau_Y) \to (Z, \tau_Z)$ be two mappings. Then, $g \circ f:(X, \tau_X) \to (Z, \tau_Z)$ is strongly g^*s - continuous if one of the following conditions are satisfied.

- (i) f is strongly g^{*s} continuous and g is continuous,
- (ii) f is semi- continuous and g is continuous,
- (iii) f is strongly g*s-irresolute and g is strongly g*s-continuous.

Proof. (i) Let $F \subseteq Z$ be a closed set and g be a continuous mapping. Then, $g^{-1}(F) \subseteq Y$ is closed. But, f is strongly $g^{*}s$ -continuous, then $f^{-1}(g^{-1}(F)) \subseteq X$ is strongly $g^{*}s$ -closed. Therefore, $(g \circ f)^{-1}(F)$ is strongly $g^{*}s$ -closed in X.

- (ii) If V is a closed subset of Z, then $g^{-1}(V) \subseteq Y$ is closed. But, f is semi- continuous, then f is strongly g^s continuous, hence $(g \circ f)^{-1}(V)$ is strongly g^s -closed in X.
- (iii) Let V be a closed subset of Z and g is strongly g*s-continuous. Then, $g^{-1}(V) \subseteq Y$ is strongly g*s-closed. But, f is strongly g*s-irresolute, then $f^{-1}(g^{-1}(V)) \subseteq X$ is strongly g*s-closed. Hence, $g \circ f$ is strongly g*s-continuous.

5. Strongly g*s-closed mappings.

Definition 5.1. A mapping $f:(X,\tau) \to (Y,\sigma)$ is called strongly generalized star semi-closed (resp. strongly generalized star semi-open) (briefly, strongly g*s-closed and strongly g*s-open) if the image of each closed (resp. open) set of X is strongly g*s-closed (resp. strongly g*s-open) in Y.

Remark 5.1. The g-closed (resp. g-open) and strongly g^s -closed (resp. strongly g^s -open) mappings are independent. The following examples show this remark.

Example 5.1. Let X Y $\{a,b,c,d\}$ and $\tau_X \{X,\phi,\{a\}\}, \tau_Y \{Y,\phi,\{a\},\{b,c\},\{a,b,c\}\}\)$ be two topologies on X,Y respectively. Then, the mapping $f:(X,\tau_X) \rightarrow (Y,\tau_Y)$ which is defined by f(a) c, f(b) a, f(c) b and f(d) d is g-closed (resp. g-open) but not strongly g*s-closed (resp. strongly g*s-open).

Example 5.2. Let X Y {a,b,c,d} with two topologies τ_X {X, φ , {b, c, d} and τ_Y {Y, φ , {a}, {b, c}, {a, b, c} . Then, the identity mapping from (X, τ_X) into (Y, τ_Y) is strongly g*s-closed (resp. strongly g*s-open) but not g-closed (resp. g-open).

Remark 5.2. It is clear that a strongly $g*_s$ -closed (resp. strongly $g*_s$ -open) mapping is weaker than semi-closed (resp. semi-open) and stronger than each of sg-closed (resp.sg-open). The implications between these new types of mappings and other corresponding ones are given by the following diagram.

The converses of these implications are not true in [11,16,18] and by the following examples.

Example 5.3. If X Y {a,b,c,d} and τ_X {X, ϕ ,{a}, {a,b}}, τ_Y {Y, ϕ ,{c,d}}, then a mapping $f:(X,\tau_X) \rightarrow (Y,\tau_Y)$ which defined by $f(a) \ c$, $f(b) \ d$, $f(c) \ a$ and $f(d) \ b$ is stronglyg*s-closed (resp. strongly g*s-open) but it is not semi-closed (resp. semi-open).

Example 5.4. If X Y $\{a,b,c\}$ with two topologies $\tau_X \{X, \phi, \{a,b\}, \{c\}\}$ and $\tau_Y \{Y, \phi, \{a\}, \{b,c\}\}$, then a mapping $f:(X, \tau_X) \rightarrow (Y, \tau_Y)$ which is defined by f(a) = a, f(b) = c and f(c) = b is gs-closed (resp. gs-open) and sg-closed (resp. sg-open) but not stronglyg*s-closed (resp. stronglyg*s-open).

Theorem 5.1. For a bijective mapping $f: (X,\tau) \to (Y,\sigma)$, the following statements are equivalent :

- (i) f is strongly g^{s} -closed,
- (ii) f is strongly g^{*s} -open,
- (iii) f^{-1} is strongly g*s-continuous.

Proof. (i) \rightarrow (ii). Let $G \subseteq X$ be an open set. Then, X-G is closed and by hypothesis, f(X-G) is stronglyg*s-closed. Since, f is bijective, hence Y - f(G) is stronglyg*s-closed. Therefore, f(G) is strongly g*s-open.

(ii) \rightarrow (iii). If $G \subseteq X$ is an open set, then f(G) is stronglyg*s-open in Y. Since, f is bijective, hence $(f^{-1})^{-1}(G)$ is stronglyg*s-open in Y. Therefore, f^{-1} is stronglyg*s-continuous.

(iii) \rightarrow (i). Let $F \subseteq X$ be a closed set. Then, $(f^{-1})^{-1}(F)$ is stronglyg*s-closed in Y. But, f is bijective, hence f(F) is stronglyg*s-closed in Y. So, f is stronglyg*s-closed.

Theorem 5.2. A mapping $f: (X,\tau) \to (Y,\sigma)$ is stronglyg*s-open(resp. stronglyg*s-closed) iff for any subset A in (Y,σ) and any closed (resp. open) set F in (X,τ) containing $f^{-1}(A)$, there exists a stronglyg*s-closed (resp. stronglyg*s-open) subset B of (Y,σ) containing A such that $f^{-1}(B) \subseteq F$.

Proof. The necessity. Let $f:(X,\tau) \to (Y,\sigma)$ be a stronglyg*s-open mapping and F be a closed set containing $f^{-1}(A)$ where $A \subseteq Y$. Then, f(X-F) is stronglyg*s-open in Y. Set, Y - f(X-F) = B. Since, $f^{-1}(A) \subseteq F$, hence $X - F \subseteq X - f^{-1}(A)$, therefore, $f(X-F) \subseteq Y - A$. Then, $A \subseteq Y - f(X-F) = B$, where, B = Y - f(X-F), then $f^{-1}(B) = f^{-1}(Y - f(X-F)) = X - (f^{-1}f(X-F)) \subseteq F$. Hence, $f^{-1}(B) \subseteq F$.

The sufficiency. Let U be an open set in X. Then, X - U is closed such that $f^{-1}(Y - f(U)) \subseteq X - U$. By hypothesis, there exists a stronglyg*s-closed set B containing Y - f(U), that is, $Y - f(U) \subseteq B$(1). Also, since, $f^{-1}(B) \subseteq X - U$, then $f(U) \subseteq f(X - f^{-1}(B)) \subseteq Y - B$ this implies that $B \subseteq Y - f(U)$...(2). Hence, from (1),(2) we have $B \quad Y - f(U)$ which is stronglyg*s-closed. So, f(U) is stronglyg*s-open. Therefore, $f: (X, \tau) \to (Y, \sigma)$ is stronglyg*s-open.

By similarly, we can prove this theorem for a case, if, $f: (X,\tau) \to (Y,\sigma)$ is stronglyg*s-closed.

Remark 5.3. The composition of two stronglyg*s-closed (resp. stronglyg*s-open) mappings may not be stronglyg*s-closed (resp. stronglyg*s-open). The following examples show this fact.

Example 5.5. Let X Y Z $\{a,b,c,d\}$ with topologies $\tau_X \{X, \varphi, \{a\}, \{a,b\}, \{a,c,d\}\}, \tau_Y \{Y, \varphi, \{a\}, \{b,c\}, \{a,b,c\}\}$ and $\tau_Z \{Z, \varphi, \{c,d\}\}$. Then, a mapping $f:(X, \tau_X) \rightarrow (Y, \tau_Y)$ which defined by f(a) = a, f(b) = d, f(c) = b and f(d) = c and a mapping $g:(Y, \tau_Y) \rightarrow (Z, \tau_Z)$ which also defined by g(a) = g(b) = a, g(c) = c and g(d) = b are stronglyg*s-closed, but $g \circ f$ is not stronglyg*s-closed.

Example 5.6. Let X Y Z $\{a,b,c,d\}$ with topologies $\tau_X \{X, \varphi, \{a\}, \{a,b\}, \{a,c,d\}\}$, $\tau_Y \{Y, \varphi, \{a\}, \{b,c\}, \{a,b,c\}\}$ and $\tau_Z \{Z, \varphi, \{c,d\}\}$. Then, a mapping $f:(X, \tau_X) \rightarrow (Y, \tau_Y)$ which defined by f(a) = a, f(b) = d, f(c) = c and f(d) b and a mapping $g:(Y, \tau_Y) \rightarrow (Z, \tau_Z)$ which also defined by $g(a) \quad g(c) \quad c, g(b) \quad d \text{ and } g(d) \quad b$ are strongly g^*s -open, but $g \circ f$ is not strongly g^*s -open.

In the following , we give the conditions under which the composition of two stronglyg*s-closed (resp. stronglyg*s-open) may be stronglyg*s-closed (resp. stronglyg*s-open).

Theorem 5.3. Let $f: (X, \tau_X) \to (Y, \tau_Y)$ and $g: (Y, \tau_Y) \to (Z, \tau_Z)$ be two mappings. Then, the following statements are hold:

- (i) If, f is closed (resp. open) and g is stronglyg*s-closed (resp. stronglyg*s-open), then $g \circ f$ stronglyg*s-closed (resp. stronglyg*s-open).
- (ii) If $g \circ f$ is stronglyg*s-closed (resp. stronglyg*s-open) and f is surjective continuous, then g is stronglyg*s-closed (resp. strongly g*s-open).
- (iii) If $g \circ f$ is closed (resp. open) and g is injective stronglyg*s-continuous then, f is stronglyg*s-closed (resp. strongly g*s-open).

Proof. (i) Let G be a closed subset of X. Then, f(G) is closed in Y. But, g is stronglyg*s-closed, then g(f(G)) is stronglyg*s-closed in Z. Therefore, $g \circ f(G)$ is stronglyg*s-closed.

- (ii) If F is closed set in Y, then $f^{-1}(F)$ is closed in X. Hence, by hypothesis, $(g \circ f)(f^{-1}(F))$ is stronglyg*s-closed. Since, f is surjective, then g(F) is strongly g*s-closed. Therefore, g is stronglyg*s-closed.
- (iii) If F is closed set in X, then $g \circ f(F)$ is closed in Z. Hence, by hypothesis, $g^{-1}((g \circ f)(F))$ is stronglyg*s-closed. Since, g is injective, then f(F) is stronglyg*s-closed. Therefore, f is stronglyg*s-closed.

6. strongly g*s-homeomorphisms.

Definition 6.1. A bijection $f:(X,\tau) \to (Y,\sigma)$ is called a stronglyg*s-homeomorphism if f is both stronglyg*s-continuous and stronglyg*s-open.

Remark 6.1. (1)Every semi-homeomorphism(B) is strongly g*s-homeomorphism.

(2) Every strongly g*s-homeomorphism is sg-homeomorphism (resp. gs-homeomorphism).

The converse of above remark is not true as is shown by the following examples. **Example 6.1.** Let $X \quad Y \quad \{a, b, c, d\}$ with two topologies $\tau_x \quad \{X, \phi, \{c, d\}\} \text{ and } \tau_y \quad \{Y, \phi, \{a\}, \{b\}, \{a, b\}\}.$ Then, a mapping $f: (X, \tau_x) \rightarrow (Y, \tau_y)$ which defined by $f(a) \quad d$, $f(b) \quad c$, $f(c) \quad a \text{ and } f(d) \quad b \text{ is stronglyg*s-homeomorphism but not semi-homeomorphism(B).}$

Example 6.2. If $X \{a, b, c\}$ with topology $\tau_x \{X, \varphi, \{a, b\}, \{c\}\}$ and, then a mapping $f: (X, \tau_x) \to (X, \tau_x)$ which defined by f(a) = a, f(b) = c and f(c) = b is sg-homeomorphism and gs-homeomorphism but not strongly g*s-homeomorphism.

By Remark 6.1 and the above examples we obtain the following diagram.

Proposition 6.1. Let $f:(X,\tau) \to (Y,\sigma)$ be a bijective and strongly g^{s} -continuous map. Then, the following statements are equivalent:

(i) f is stronglyg*s -open,

(ii) f is strongly g*s-homeomorphism,

(iii) f is strongly g^{*s} -closed.

Proof. (i) \rightarrow (ii). It is clear from Definition 6.1.

(ii) \rightarrow (iii). Since, f is strongly g*s-homeomorphism, then f is strongly g*s-open. But, f is bijective , hence by Theorem 5.1, f is strongly -g*s closed.

(iii) \rightarrow (i). Obvious.

Remark 6.2. The composition of two stronglyg*s- homeomorphism mappings may not be stronglyg*s- homeomorphism. The following example shows this fact.

Example 6.3. Let X Y Z {a,b,c} with topologies τ_x {X, φ ,{a}}, τ_y {Y, φ ,{a,c}} and τ_z {Z, φ ,{c}}. Then, a mapping $f:(X,\tau_x) \to (Y,\tau_y)$ which defined by f(a) c, f(b) b and f(c) a and a mapping $g:(Y,\tau_y) \to (Z,\tau_z)$ which also defined by g(a) c, g(b) b and g(c) a are stronglyg*s-homeomorphism, but $g \circ f$ is not stronglyg*s-homeomorphism.

References

- [1] D. Andrijevic`, Semi -preopen sets, Mat. Vesink, 38(1) (1986),24-32.
- [2] S. P. Arya and T.Nour, Characterizations of s-normal spaces, Indian J. Pure Appl. Math., 21 (8) (1990), 717-719.
- K. Balachandran, P. Sundram and H. Maki, On generalized continuous maps in topological spaces, Mem. Fac. Sci. Kochi Univ. Ser A Math. 12(5) (1991),

5-13.

- [4] P.Bhattacharyya and B. K. Lahiri, Semi-generalized closed sets in topological spaces, Indian J. Math., 29 (1987) 376-382.
- [5] N.Biswas, Some mappings in topological spaces, Bull. Cal. Math. Soc. 61 (1969), 127-135.
- [6] M. C. Calds, Semi-generalized continuous maps in topological spaces, Portugal. Math. ,52 (4) (1995) , 399-407.
- [7] S. G. Crossley and S. K. Hildebrand, Semi-closure, Texas J. Sci., (3+4) (1971), 99-119.
- [8] S. G. Crossley and S. K. Hildebrand, Semi-closed sets and semi-continuity in topological spaces, Texas. J. Sci., (2+3) (22) (1971) 123- 126.
- [9] S. G. Crossley and S. K. Hildebrand ,Semi topological properties, Fund . Math. 74 (1972) , 233-254.
- [10] R. Devi, K. Balachandran and H. Maki, Semi-generalized homeomorphism and generalized semi-homeomorphism in topological spaces, Indian J. Pure Appl. Math., 26 (3) (1995), 217-248.
- [11] R.Devi, H. Maki and K. Balachandran, Semi-generalized closed mappings and generalized semi- closed mappings, Kochi, Univ. (Math.), 14 (1993), 41-54.
- [12] A. I. EL-Maghrabi and A. A. Nasef, Between semi-closed and gs-closed sets, ijgt, (1) (2) (2008).
- [13] N. Leviene, On the commutivity of the closure and the interior operator in topological spaces, Amer. Math. Monthly, 68(1961), 474-477.
- [14] N. Leviene, Semi open sets and semi continuity in topological spaces, Amer. Math. Monthly, 70 (1963), 36-41.
- [15] N. Leviene ,Generalized closed sets in topology , Renal . Circ. Mat. Palermo , 19 (2) (1970) , 89-96.
- [16] S. R. Malghan, Generalized closed mappings, J. Karnatak Univ. Sci., 27 (1982), 82-88.
- [17] A.S. Mashhour, M.E. Abd EL-Monsef and S. N. EL-Deeb, On precontinuous and weak precontinuous mappings, Proc. Math. Phys. Soc. Egypt, 53 (1982), 47-53.
- [18] O. Njasted ,On some classes of nearly open sets , Proc. Math. 15 (1965) , 961-970.
- [19] M. K. Singal and A. R. Singal, Almost continuous mappings, Yokohama. Math. J., 16 (1968), 63-73.

A.I. EL-Maghrabi et al, Journal of Global Research in Mathematical Archives, 1 (1), January 2013, 19-28

- [20] P. Sundaram, H. Maki, and K. Balachandran, Semi generalized continuous maps and semi -T_{1/2} spaces, Bull. Fukuoka Univ. Ed. Part (III),40 (1991), 33-40.
- [21] M. K. R. S. Veera Kumar, Between closed sets and g-closed, Mem. Fac. Sci. Kochi. Univ. (Math.), 21(2001), 1-19.