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Abstract:-This work examine hall and ion-slip effects on the steady state flow of an incompressible and electrically conducting couple stress 
fluid through an extended porous channel with walls suction and injection. Solutions have been made numerically for the constitutive equations 
governing the steady state flow of an incompressible and electrically conducting couple stress fluid through a porous channel under the influence 
of uniform applied magnetic field assuming uniform suction at the upper plate and uniform injection at the lower plate by considering current 
distribution across the porous channel and the corresponding effect. The obtained magneto hydro dynamic (MHD) momentum equation 
governing the flow is non-linear, coupled system of higher order differential equation and solved numerically using the so called Quasi-
Linearization (Q-L) technique. Furthermore variations of shearing stress and velocity profiles around the extended porous channel with respect 
to couple stress fluid parameter, hall parameter; ion-slip parameter, suction Reynolds and Hartmann numbers have all been well calculated. 
Eventually, the variations and relationships of these dimensionless parameters on the magneto hydro dynamic (MHD) flow have been depicted 
graphically. For computational verification of relationships of parameters we used visual FORTRAN version 95.
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1. Introduction       
In recent times almost of all studies concerning MHD flows of an electrically conducting fluid M.D.Raisinghania in 2003 [6] 
through porous channel(s) the presence of magnetic field is of importance in various areas of fields of technology and engineering 
such as MHD power generation, MHD-flow meters, MHD-micro pumps, various MHD working systems those are used on 
reducing the rate of aerodynamic heat transfer, different magnetic field controlling units of modern mechanical working 
machineries and so on. This model is chosen because of its relative mathematical simplicity when compared with other models 
developed for couple stress fluid flow problems and currently it is widely used one. Therefore the study of such most attractive 
phenomena is being timely and hence very important for technological improvements.

On the other hand in the development of category of non-Newtonian fluids, the couple stress fluid as an electrically conducting 
special non-Newtonian fluid has been highly attracted most scientists, mathematicians, and engineers for the last few years. The 
couple stress fluid theory developed by V.K.Stokes in 1966 [12] represents the simplest generalization of the classical viscous 
fluid theory that sustains couple stresses and the body couples. The important feature of these fluids is that the stress tensor is not 
symmetric and their accurate flow behavior cannot be predicted by the classical Newtonian theory. The fluids consisting of rigid, 
randomly oriented particles suspended in a viscous medium, such as blood, lubricants containing small amount of polymer 
additive, electro-rheological fluids and synthetic fluids are examples of these fluids. The flow of a couple stress fluid between two 
parallel horizontal stationary plates due to fluid injection through the lower porous plate is considered by Kabadi.A in 1987 [5]. 
Recently, D.Srinivasacharya and S.Mekonnen in 2008 [1] discussed hall and ion-slip effects on the flow of a micro polar fluid 
between parallel Plates. Ke-Qin Zhua and Yong-Li Chen in 2008 [14] analyzed Couette-Poiseuille Flow of Bingham Fluids 
between Two Porous Parallel Plates with Slip Conditions. Again Darhasayanam Srinivasacharya and S.Mekonnen in 2009 [4]
examined hydro magnetic effects on the flow of a micropolar fluid in a diverging channel. R.N.Jat and Santosh Chaudhary in 
2010 [9] studied the flow and heat transfer for an electrically conducting fluid past a continuously moving plate with variable 
surface temperature in the presence of a uniform transverse magnetic field. D.Srinivasacharya and K.Kaladhar in 2012 [3] studied 
hall and ion-slip effects on electrically conducting couple stress fluid flow between two circular cylinders in the presence of a 
temperature dependent heat source and the homotopy analysis method is employed to solve the non linear governing flow 
problem. A significant work by Darbhasayanam Srinivasacharya, N.Srinivasacharyulu and Odelu Ojjela in 2012 [2] studied the 
steady state flow of incompressible couple stress fluid flow between parallel porous plates maintained at constant but different 
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temperatures with the assumption that there is a constant suction at upper plate and a constant injection at the lower plate. Odelu 
Ojjela in 2012 [7] considered the flow of a viscous fluid between two parallel porous plates subjected to the periodic oscillation 
without neglecting non linear terms. Furthermore M.Veera Krishna, Syamala Sarojini and Shankar.C.Uma in 2012 [13] studied 
analytical study of  unsteady magneto hydro dynamic flow of a couple stress fluid through a  porous medium between  parallel  
plates under  the  influence  of pulsation  pressure gradient. However, many of the problems outlined above dealt with flow and 
heat transfer of couple stress fluid between porous plates with expanding and contracting walls. It is also seen unsteady flow 
through channels by considering rotation on couple stress fluid, and influence of traverse magnetic field, MHD flows of other type 
of conducting non-Newtonian fluids. The aim of this paper is to examine the steady state hydromagnetic flow of an 
incompressible and electrically conducting couple stress fluid through a porous channel under the influence of uniform applied 
magnetic field assuming uniform suction at the upper plate and uniform injection at the lower plate with the consideration of
hydro magnetic effects of Hartman number, hall and ion-slip parameters on the flow.

           In general an attempt has been made to demonstrate the flow of a steady, electrically conducting and incompressible couple 
stress fluid through parallel porous plates (porous channel) under the influence of applied uniform magnetic field suited 
perpendicular to the walls of the porous plates. Furthermore, the flow analysis has been developed for high values of Reynolds 

number ( 1
0Re   hU ) and for relatively low values of Hartmann number ( hBHa 0 ) or magnetic Reynolds 

number. Solutions can be examined numerically for the constitutive equations under the influence of applied uniform magnetic 
field situated perpendicular to the plane of flow, current distribution across the porous channel and the corresponding effect. The 
hydro magnetic flow governing momentum equation in the presence of applied uniform magnetic field ignoring gravitational field 
effects, considering hall and ion-slip current effects is coupled, nonlinear higher order differential equation which cannot be 
analytically solved and can be solved numerically. Thus we engaged here to apply a special numerical method called Quasi-
Linearization. Also an attempt has been made to examine the magnetic field effects and effects of different parameters, such as; 
material constant responsible for the couple stress fluid property, suction Reynolds and Hartmann numbers along with hall and
ion-slip parameters on the MHD flow of electrically conducting couple stress fluid through a porous channel with walls suction 
and injection. 

          
Finally, to describe the general fluid dynamical aspects of MHD, suppose that the fluid is incompressible and electrically 
conducting and is in the presence of an arbitrary magnetic field. The magnetic field then interacts with the fluid by means of body 
force and body couple per unit mass. If gravitational effects are not present, then a regular magneto-fluid dynamics assumption is 

f = eE + BJ  , where e is the free charge density. Since, the electric force density eE is smaller than the Lorentz force or 

the electromagnetic force term BJ  i.e. eE BJ  so that it can be neglected [6]. Hence, the fluid dynamical aspects of 
magneto hydro dynamic or hydro magnetic flows are handled by adding an electromagnetic force term to the momentum equation 
of the fluid. In other words, the fluid dynamical aspects of hydro magnetic flows are handled by adding the electromagnetic force 

term BJ  to the non-hydro magnetic flow governing momentum equation. 

Next we use the significant consequences of fluid dynamical aspects of MHD for the formulation of our problem, by considering 
the effects of hall and ion-slip parameters on the MHD flow with suction and injection.

2. MATHEMATICAL FORMULATION OF THE PROBLEM
             
To investigate hydromagnetic effects on the flow of couple stress fluid through a porous channel with walls suction and injection. 
For this consider a steady state, incompressible and electrically conducting couple stress fluid flow through a horizontal extended 
porous channel at distance ‘h’.  Choose the Cartesian coordinate system such that the origin is at the middle of the plates, y-axis is 
perpendicular to the plates, x – axis is in the flow direction and the two planes are infinitely extended in the x and z directions. A 
constant pressure gradient is applied along the direction of the x-axis and the flow is subjected to a uniform magnetic field (B0) 
perpendicular to the flow direction as shown in Fig.1 below. 
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Fig.1 Formulation of the problem.
            

The velocity and the magnetic field vectors are respectively given in the form as:
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Where 
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B the magnetic field intensity. 
            The governing equation of MHD incompressible, electrically conducting couple stress fluid flow (when body force and 
body moments are absent) is given in the form:
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Also we have: 
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Substitute the results of equations (6) through (8) in to (3), then we get
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            It follows, by comparing coefficients of unit vectors in the respective directions of Cartesian coordinates that:                     
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            Now the current density which retains Hall current and ion-slip current terms is given by:
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            Here 0


E , by assumption that the induced magnetic field is very small. 

Where, 


J is the current density,  is the electrical conductivity,  is the Hall factor, and iB is the ion-slip parameter.           
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            We introduce the stream function  through 
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

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
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


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
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

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









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

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




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
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
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




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
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
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,                 (24a)               

and                 

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
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or                    
5

5
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
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hhxxx
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
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
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,               (25a)             

and                
4

5
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32
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

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

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                      (25b)

Where .
1

2

2

22

2
2

1










hx

            Following G.Sherstha and R.Terrill (1965), we take the stream function as:

                                   )(),( 10  f
h

xv

a

U
hx 






                                                         (26)

where 0U is entrance velocity, 
1

01
v

v
a  and )(f is a function of to be determined.

            Substituting (26) in to (24a) through (25b), we get 
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

 1hv
S R  , is the Suction Reynolds number,

                       
hBHa 0

, is the Hartmann number and

                       
h

1
 , is the couple stress fluid parameter.

           Eliminating the pressure from equations (27a) and (28b), we get

                       0    '''''''' 2
1

210 fHakffffffS
h

xv

a

U VIIV
R 






                            

or                     '''')'(''0 2
1

22 fHakfffffSd V
R   .   

         Therefore,         

                        kfffSfffHak R
V  ])'(''['''' 222

1     
                                         (29)

where, k is a constant to be determined and Ha is Hartmann number.
            The boundary conditions are the no slip condition given by: 
                                               0)0,(),(  xuhxu                                                        (30a)

                                               0)0,( vxv  , 1),( vhxv                                                   (30b)

                                   0
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qcurl .                                       (30c)

            In terms of )(f , these boundary conditions are taking the form:
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            Again         
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            Similarly, using the boundary condition given in equations (30b) and (30c)
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            Substitute in to equation (26) we get
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on 1,0

or                               0)('' f on 1,0 .  i.e. 



Zelalem Yidres et al, Journal of Global Research in Mathematical Archives, 1(10), October 2013, 1-14

© JGRMA 2013, All Rights Reserved 8

                                  0)0('' f ; 0)1('' f .  

            Therefore, we have 

                                   af  1)0( ;  1)1( f

                                   0)0(' f ;  0)1(' f

                                   0)0('' f ; 0)1('' f .                                                                                                      

            Differentiating (29) with respect to we get

                                  '']'''''''[ 2
1

2 fHakffffffS VIIV
R   = 0                        (31)                                                          

            Boundary conditions:
                                   af  1)0( ;  1)1( f                                                               (32a)

                                   0)0(' f ;  0)1(' f                                                                  (32b)

                                   0)0('' f ; 0)1('' f .                                                                (32c) 

          
3. Solution of the Problem
[Quasi-Linearization Method for solving mth Order Nonlinear 
                              Two-point Boundary Value Problem]       
            Quasi-linearization method is one of the numerical methods helps us to solve higher order non-linear two-point boundary 
value problem. In particular, the governing MHD momentum equation is coupled non-linear higher order differential equation 
which is not analytically solved, and therefore can be solved by applying a numerical method through which the one that involves 
linearizing the entire non-linear terms about some specified conditions, and is termed as quasi-linearization method (or technique).
            Next we apply quasi-linearization technique to solve equation (31) together with the boundary conditions given in (32). In 
order to implement quasi-linearization technique, the equation (31) can be set as a system of equations as follows:

                          ),,,,,(),,''',",',( 654321 xxxxxxffffff VIV 

                       )(),,,,,( 654321 XFxxxxxxF
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dx
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            The boundary conditions in terms of X are:

                       ax  1)0(1                0)0()0( 32  xx                                                    (34a)

                       1)1(1 x                       0)1()1( 32  xx                                                      (34b)

            The system of equations (33) is solved numerically subject to the boundary conditions (34) using quasi-linearization 

method (also known as generalized Newton’s method) given by R.Bellman and R.Kalaba in 1965 [8].  Let )(( r
ix , 6,...,2,1i ) be 

an approximate current solution and )1(( r
ix , 6,...,2,1i ) be an improved solution of (33).                              

           By taking Taylor’s series expansion around the current solution and neglecting the second and higher order derivative 
terms, the coupled first order system (33) is linearized as:          
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1
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1
  rr xxHak

.                                             (35)  
            Boundary conditions:

ax  1)0(1
1
                                1)1(1

1 x                                                               (36a)

0)0(1
2 x                                      0)1(1

2 x                                                             (36b) 

0)0(1
3 x                                      0)1(1

3 x                                                             (36c)                          

            To solve for )1(( r
ix , 6,...,2,1i ) the solution to six separate initial value problems, denoted 

by: )(1 h
ix , )(2 h

ix , )(3 h
ix [which are the solutions of the homogeneous system corresponding to (35)] and )(p

ix [which 

is the particular solution of (35)], with the following initial conditions are obtained by using a Runge-Kutta method.

                       1)0(1
4 hx , 0)0(1 h

ix for 4i                                                            (37a)

                       1)0(2
5 hx , 0)0(2 h

ix for 5i                                                           (37b)

                       1)0(3
6 hx , 0)0(3 h

ix for 6i                                                          (37c)

                       ax p  1)0(1 , 0)0( p
ix for 1i                                                       (37d)

Since the differential equations are linear, the principle of superposition holds and the general solution may be written as:

   
)()1( r

ix )()()()()()( 5
5

4
4

3
3

2
2

1
1  p

i
h

i
h

i
h

i
h

i
h

i xxCxCxCxCxC       (38)

Where 1C , 2C , 3C , 4C and 5C are the unknown constants and are determine by considering the boundary condition at 1 . 

This solution )1(( r
ix , 6,...,2,1i ) is then compared with solution at the previous step )(( r

ix , 6,...,2,1i ) and further iteration is 

performed if the convergence has not been achieved or greater accuracy is desired.   

4. Results and Discussion

 The coefficient of the nondimensional shear stress fS at the walls is given by:

           
)(21 2

0
2

22

Uh
S f 

 
    at 0 and 1

                 





 

Re

1

Re

2

h

xS

a
R )('' f at 0 and 1 . 

            Where Re is the Reynolds number and h is the height of the channel. 
 In Table-1 below the dimensionless skin friction coefficient is tabulated for different values of suction Reynolds number 

(
RS ) with Ha=5,  = 0.5, 5iB , hB = 0.3 and Re = 200 at the lower plate (λ = 0) where injection takes place and 

upper plate where suction takes place (λ = 1). From this table it can be observed that the skin friction coefficient is 
increasing when one move away from the lower to upper plate and again to the axis of the channel. In other words, the 
skin friction coefficient is decreasing at the lower plate whilst increasing at the upper plate of the porous channel, with 
suction Reynolds number.

Suction Reynolds Number

)( RS
Lower Plate with
Constant Injection

Upper Plate with 
Constant Suction

0.0 0.59010 -0.37970

1.0 0.37061 -0.34555
3.0 0.15210 -0.25982
5.0 0.10926 -0.15906

Table-1: Variation of skin friction for various values of (
RS ), Ha = 5, = 0.5,

a = 0.2, 5iB , hB = 0.3 and Re = 200.
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 Generally in Table 2 as shown below the non dimensional skin friction is tabulated for different values of Hartmann 

number ( Ha) with 
RS = 10, = 0.5, a = 0.2, 5iB , hB = 0.3  and Re = 200 at the lower and upper plates where 

injection and suction takes place.  From this table it can be observed that the skin friction decreases at upper and lower 

plates as the Hartmann number ( Ha) increases. 

Hartmann number )( aH Lower plate with
Constant Injection

Upper plate with 
Constant Suction

0.0 0.20849 0.16336
1.0 0.20561 0.16259
3.0 0.18137 0.15402
5.0 0.12118 0.12312

Table-2: Variation of skin friction for various values of ( Ha),

RS = 10, = 0.5, a = 0.2, 5iB , hB = 0.3 and Re = 200.      

 In Table-3 as shown below the dimensionless skin friction coefficient is tabulated for different values of couple stress 

fluid parameter ( ) with
RS = 10, Ha = 5, 5iB , hB = 0.3 and Re = 200 at the lower and upper plates. From this 

table it can be observed that the skin friction coefficient is decreasing at the upper plate where suction takes place (i.e. λ = 
1) whilst increasing at the lower plate where injection takes place (i.e. λ = 0) with couple stress fluid parameter ( ).

Material constant ( ) Lower plate with
Constant Injection

Upper plate with
Constant Suction

0.70 0.16429 -0.11063
1.00 0.23672 -0.27391
3.00 0.24090 -0.45378
5.00 0.22716 -0.47124

Table-3: Variation of skin friction for various values of ( ),

RS = 10, Ha= 5, a = 0.2, 5iB , hB = 0.3 and Re = 200.

Next the velocity components ( vu, ) for various values of
RS , Ha ,  , iB , hB and ‘a’ are calculated correct to six places of 

decimal by taking the axial distance 0.2 and 101 vva  from equation (26) where 10 vv is the injection-suction velocity ratio.           

 Fig.2 shows that the variation of axial velocity (u) with  for different values of suction Reynolds number (
RS ) for 

Ha=5,  = 0.5, ,2.0a iB = 5, hB = 0.3 and Re=200. The velocity increase initially near to the lower plate 

(injection takes place) achieving the maxima which shifts toward the plate  = 1 (suction takes place) and decrease 
thereafter, with suction Reynolds number.

 Fig.3 depicts the effect of Hartman number Ha on the axial velocity component for 
RS = 10, = 0.5, ,2.0a iB = 5, 

hB = 0.3 and Re=200. From this Fig.3 it can be observed that the effect of increasing values of the Hartmann number on 

the flow is to damp the velocity profile. The dampening is pronounced at the center of the channel, the more the Hartman 
number the velocity flattened. Hence this creates a stagnation point and consequently fluid pushed to the walls of the 
channel thereby increasing the velocity in the boundary layer. 

 Fig.4 shows that the variation of the axial velocity (u) with  for different values of couple stress fluid parameter  for 

RS = 10, Ha= 5, ,2.0a 5iB , hB = 0.3 and Re=200. The effect of the couple stress parameter on axial velocity 

component has been presented in Figs.4. It can be observed that the axial velocity increases near the central plane as the 
value of  increases. However, this trend is reversed near walls. In general Fig.4 shows the effect of ( ) on axial 

velocity (u) for the values of 
RS = 10, Ha= 5, ,2.0a 5iB , hB = 0.3 and Re=200 and it can be observed that the 

axial velocity (u) decreases as the couple stress fluid parameter ( ) increases. It can also be noted that the more the fluid 
is non viscous fluid ( 0) greater the velocity increases at the center. 

 Fig.5 demonstrates the variations of the axial velocity component (u) for different values of the parameter ( a ) with 
RS = 

10, Ha = 5, 5.0 , ,5iB hB = 0.3 and Re = 200. From Fig.5 it can be observed the axial velocity (u) decreasing 

as the parameter ( a ) increases or as injection-suction ratio decreases.    

 Fig.6 indicating that the velocity profiles for different values of ionic-slip parameter ( iB ) with 
RS = 10, Ha= 

5, 5.0 , ,2.0a hB = 0.3 and Re=200. The velocity component increase as the ionic slip parameter near to the 

lower plate and near to the upper plate the velocity decrease (effect of suction) as iB increases. As iB increases the 

effective conductivity also increases, in turn, decreases the damping force on velocity, and hence the velocity increases.  
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 Fig.7 show the effect of Hall parameter ( hB ) on velocity for
RS = 10, Ha= 5, 5.0 , 5iB and Re=200. It can be 

seen from these figure that the Hall parameter increases the velocity near the lower plate. Inclusion of Hall parameter 
decreases the resistive force imposed by the magnetic field due to its effect in reducing the effective conductivity.

4.1. List of Figures

Fig.2 Illustration of non-dimensional axial velocity profile (u) with  for different values of
RS , Re = 200, Ha= 5,  = 0.5, iB = 

5, hB = 0.3, and a = 0.2.

Fig.3 Illustration of non-dimensional axial velocity profile (u) with  for different values of Hartmann number ( Ha), Re = 

200,
RS = 10, = 0.5, iB = 5, hB = 0.3, and a = 0.2.
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Fig.4 Illustration of non-dimensional axial velocity profile (u) with  for different values of material constant ( ),
RS = 10, 

Ha= 5, iB = 5, a = 0.2, hB = 0.3 and Re = 200.

Fig.5 The variation of Dimensionless axial velocity profile (u) with  for different values of the parameter (a),
RS = 10, Ha= 

5, 5.0 , iB = 5,, hB = 0.3 and Re =200.



Zelalem Yidres et al, Journal of Global Research in Mathematical Archives, 1(10), October 2013, 1-14

© JGRMA 2013, All Rights Reserved 13

Fig.6 The variation of Dimensionless axial velocity profile (u) with  for different values of ion-slip parameter ( iB ),
RS = 10, 

Ha= 5, 5.0 , a = 0.2, hB = 0.3 and Re =200.

Fig.7 The variation of Dimensionless axial velocity profile (u) with  for different values of Hall parameter ( hB ), 
RS = 10, 

5.0 , Ha= 5, iB = 5, a = 0.2 and Re =200.

5. Conclusion        
            The steady state incompressible and electrically conducting couple stress fluid flow through a porous channel with 
injection and suction under the influence of applied uniform magnetic field is studied. Increase in the expansion ratio increase in 
transverse velocity components and also the axial velocity component except the regions near the boundaries. The velocity 
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decreases at the centerline and increases in the boundary layer with an increase the magnetic parameter. The micro-rotation 
increases with an increase in micro-concentration while it decreases with an increase in the magnetic field. The main results 
indicate the following findings.

 Increasing Hall and Ion slip parameters leads to an increase in the velocity around the center.
 The case couple stress fluid parameter   0 obtained results corresponds to the classical viscous fluid case. This 

provides a useful check.
 The axial velocity (u) decreasing as the parameter ( a ) increases or injection-suction velocity ratio decreases.   
 Increasing the Hartman number the fluid velocity decreases.

The work presented in the paper can be extended to analyze the non-Newtonian behavior by modeling flow as power law 
fluid, Casson fluid, ferro fluids, anisotropic fluid etc.  The results discussed in the paper may be extended to the blood flow in an 
artery with stenosis and/or the flow between clot and stenosis.
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