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INTRODUCTION 

The Banach contraction principle is the most celebrated fixed point theorem and has been generalized in various directions [1, 6, 

7, 13]. Recently Agarwal [1], Bhaskar and Laxmikantham [4], Hussain [11], Nietz and Rodriguez-Lobez [13] presented some new 

results in partially ordered metric spaces. D. Guo and Laxmikantham [9, 10] introduced the concept of mixed monotone operator 

and the coupled fixed points. Later on several authors [5, 8, 11, 14, 15] have used this concept and proved the existence of coupled 

fixed points for mixed monotone operators. Ciric and Laxmikantham [8] generalized the concept of mixed monotone to mixed g-

monotone and have obtained existence theorems for coupled fixed points. 

In this paper, the existence theorem of coupled coincidence point is proved. The main tool in the proof of result combines the 

ideas in the contraction principle with those in the monotonic iterative technique. An example is given satisfying contractive type 

condition. 

Recall that if (X, ≤) is a partially ordered set and f : X → X such that for x, y  X,        x ≤ y implies f(x) ≤ f(y), then a mapping f is 

said to be nondecreasing. Similarly, a nonincreasing mapping is defined. Bhaskar, Laxmikantham [2] introduced the following 

notion of mixed monotone mapping and a coupled fixed point. 

Definition 1.1[4] Let (X, ≤) be a partially ordered set and f : X×X → X. The mapping f is said to have mixed monotone property if 

f is nondecreasing monotone in its first argument and is nonincreasing in its second argument, i.e. for any x, y X, 

x1, x2  X, x1≤ x2 f(x1, y) ≤ f(x2, y); 

y1, y2  X, y1 ≤  y2 f(x, y1) ≤ f(x, y2). 

Definition 1.2[4] An element (x, y)  X × X is called a coupled fixed point of the mapping     f : X × X → X if   x = f(x, y), y = f(y, 

x). 

If there is x X such that x = f(x, x) then x is called a fixed point of f. Let S denote the class of functions             β : [0, ∞) → [0, 1) 

which satisfies the condition β (tn) → 1  tn → 0. 

In this paper the existence of coupled coincidence points are obtained with the help of the altering functions. We recall the 

definition of altering function. 

Definition 1.3[6] An altering function is a function ψ: [0, ∞) → [0, ∞) which satisfies following. 

(a)  ψ is continuous and nondecreasing. 

(b)  ψ (t) = 0 if and only if t = 0. 

Abstract: The existence theorem of coupled coincidence point is proved. The main tool in the proof of result combines the ideas in the 

contraction principle with those in the monotonic iterative technique. An example is given satisfying contractive type condition. 
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Definition 1.4 A function ψ : [0, ∞) → [0, ∞) is said to be convex if 

ψ (αt1 + (1 - α)t2) ≤ α ψ (t1) + (1 - α) ψ (t2) 

where t1, t2  [0, ∞) and α  [0, 1]. 

Definition 1.5 A function   ψ: [0, ∞) → [0, ∞) is said to be affine if 

ψ (αt1 + (1 - α)t2) = α ψ (t1) + (1 - α) ψ (t2) 

where t1, t2  [0, ∞) and α  [0, 1]. 

Altering functions have been used in metric fixed point theory in recent papers [6, 2, 12, 3]. 

2 Main Results 

Analogous with definition 1.1, Laxmikantham and Ciric [8] introduced following concept of mixed g-monotone mapping. 

Definition 2.1[8] Let (X, ≤) be a partially ordered set and f : X×X → X and g : X×X → X. We say that mapping f has mixed g-

monotone property if f is nondecreasing g-monotone in its first argument and is nonincreasing g-monotone in its second argument, 

i.e. for any x, y X, 

x1, x2  X, g(x1)≤ g(x2) f(x1, y) ≤ f(x2, y); 

y1, y2  X, g(y1)≤ g( y2) f(x, y1) ≤ f(x, y2). 

Note that if g is identity mapping, then definition 2.1 reduces to definition 1.1. 

Definition 2.2[8] An element (x, y) X× X is called a coupled coincidence point of the mappings f : X×X → X and g : X×X → X if  

g(x) = f(x, y); g(y) = f(y, x). 

Definition 2.3[8] Let X be a nonempty set and f : X×X → X and g : X×X → X. f and g are said to have commutative property if 

g(f(x, y)) = f(gx, gy), for all x, y X. 

Suppose (X, d) be a metric space and f : X×X → X,  g : X×X → X such that  f(X × X)  g(X). For any x0, y0 X, we can choose x1, 

y1 X such that g(x1) = f(x0, y0) and g(y1) = f(y0, x0). Similarly for x1, y1 X, there exists       x2, y2 X such that g(x2) = f(x1, y1) 

and g(y2) = f(y1, x1). Continuing this process we can construct sequences {gxn} and {gxn}in X such that 

                                                                 gxn+1 = f(xn, yn) and gyn+1 = f(yn, xn).                                                   (2.1) 

For the main result we need following assumptions. 

(H1)  f(X × X)  g(X). 

(H2)  f has mixed g-monotone property. 

(H3) For any x, y, u, v X, 

ψ (d(f(x, y), f(u, v))) ≤ (d(gx, gu) + d(gy, gv)) ψ([d(gx, gu) + d(gy, gv)]/2) 

where β  S and   is convex altering function. 

Theorem 2.1 Let (X, d) be a metric space and f : X×X → X,  g : X×X → X. Suppose (H3) holds. If (x, y) X× X is a coupled 

coinsidence of g and f then gx = gy. Moreover, if (x, y) and (x0, y0) are coupled coinsidences of        g and f then gx = gx0 = gy = 

gy0. 

Proof: Suppose (x, y) X× X is a coupled coinsidence of g and f. Therefore, 

g(x) = f(x, y); g(y) = f(y, x). 

From (H3), we get 

))),(),,((())),((( xyfyxfdgygxd  

                             
2

),(),(
)),(),((

gxgydgygxd
gxgydgygxd  

                             )).,()),(2( gydgxgygxd  

Since   is an altering function and S , from the above inequality we get  d(gx, gy) = 0 which implies     gx = gy. 

Now suppose (x, y) and (x`,  y`) are coupled coincidences of g and f. Therefore, 

g(x) = f(x, y); g(y) = f(y, x). 
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and 

g(x`) = f(x`, y`); g(y`) = f(y`, x`). 

Moreover we have gx = gy and gx` = gy`.  From (H3) we get, 

)))','(),,((()))',(( yxfyxfdgxgxd  

                             
2

`),(`),(
`)),(`),((

gygydgxgxd
gygydgxgxd  

                              
2

`),(`),(
`)),(`),((

gxgxdgxgxd
gxgxdgxgxd  

                              )).',(())',(2( gxgxdgxgxd  

 

Since   is an altering function and S , from the above inequality we get d(gx, gx`) = 0 which implies     gx = gx`. 

This completes the proof. 

For the main result we need the following lemma. 

Lema 2.1 Let (X, ≤, d) be a partially ordered metric space and f : X  X  X, g : X  X. Assume (H1) - (H3) hold. Suppose there 

exists x0, y0 X  such that 

                                                                 gx0 ≤ f(x0, y0) and f(y0, x0) ≤ gy0                       (2.2) 

If the sequences {gxn}, {gyn} are defined by (2.1) then 

(a) {gxn} is nondecreasing and {gyn} is nonincreasing sequence. 

(b)     0),(lim 1nn
n

gxgxd                   (2.3) 

                                                          0),(lim 1nn
n

gygyd                   (2.4) 

(c) {gxn} and {gyn} are both Cauchy sequences. 

Proof: Hypothesis (H1) implies that the sequences {gxn} and {gyn} defined by (2.1) exist. 

(a) To prove 

                                                                      gxn+1  gxn                    (2.5) 

and              gyn+1 ≤ gyn,                      (2.6) 

we use mathematical induction. By (2.2), it is obvious that gx0 ≤ gx1 and gy0  gy1. Thus (2.5) and (2.6) hold for n = 0. Suppose 

now that (2.5) and (2.6) hold for some fixed n  0. Then, since gxn ≤ gxn+1 and gyn  gyn+1 and as f has g-mixed monotone 

property, 

gxn+1 = f(xn, yn) ≤ f(xn+1, yn) ≤ f(xn+1, yn+1) = gxn+2, 

gyn+1 = f(yn, xn)  f(yn+1, xn)  f(yn+1, xn+1) = gyn+2. 

Thus by the mathematical induction, we conclude that (2.5) and (2.6) hold for 

all n  0. Therefore, 

                                                         gx0 ≤ gx1 ≤ gx2 ≤ …. ≤ gxn ≤ gxn+1 ≤ ….                 (2.7) 

                                                       gy0  gy1  gy2  ….   gyn  gyn+1  ….                 (2.8) 

To prove (b), denote n = d(gxn, gxn+1) + d(gyn, gyn+1).  Using (H3) we obtain 

))),(),,((()),(( 111 nnnnnn yxfyxfdgxgxd  

                                 
2

,(),(
)),(),(( 11

11

nnnn

nnnn

gygydgxgxd
gygydgxgxd
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Similarly we obtain, 

2
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Since  is a convex function, 

2
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2

)( 1

1

n

n .                                                                       (2.9) 

 

Moreover,   is nondecreasing and S , hence we have    2/2/ 1nn . 

Therefore, 

                                                                          n ≤ n-1                   (2.10) 

If there exists n0 such that n0 = 0 then obviously (2.3), (2.4) hold. 

In other case, suppose n  0 for all N . Then taking into account (2.10), the sequence { n} is decreasing and bounded below. 

So 

                                                                       0lim rn
n

                (2.11) 

Assume r > 0, then from (2.9), we have 

                                                   1)(

2

2
1

1

n

n

n

.                                           (2.12) 

Letting n  1 in the last inequality and by the fact that   is continuous, we get  1 ≤ ( n – 1) < 1. 

Therefore 

1)(lim n
n

 

Since S , limn 1 ( n) = 0 and this contradicts to our assumption that r > 0. Therefore     r = 0 and hence (2.3) and (2.4) hold. 

To prove (c), it is sufficient to prove following two statements. 

(i) At least one of sequences {gxn} and {gyn} is a Cauchy sequence. 

(ii) If one of sequences {gxn} and {gyn} is a Cauchy sequence then so is other. 

 

If possible suppose that {gxn} and {gyn} both are not Cauchy sequences.  Therefore there exists 1  > 0 and     2  > 0 for which 

we can find subsequences {gxn(k1)} and {gyn(k2)} such that 
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1)()(111 ),(;)()(
11 kmkn gxgxdkkmkn  

and 

2)()(222 ),(;)()(
22 kmkn gxgxdkkmkn . 

Suppose },max{};,min{ 2121 kkk , then for n(k) > m(k)  k, 

d(gxn(k), gxm(k))   and d(gyn(k), gym(k))  . 

Corresponding to m(k) we can choose smallest n1(k) and n2(k) such that 

n1(k) > m(k), n2(k) > m(k) satisfying  d(gxn1(k), gxm(k))  ; d(gyn2(k), gym(k))   

and 

                                                                d(gxn1(k) – 1, gxm(k)) <                 (2.13) 

                                                                d(gyn2(k) – 1 , gym(k)) < .                (2.14)  Using (2.13) and 

the triangular inequality, we have 

 ≤ d(gxn1(k), gxm(k)) 

                                                                              ≤ d(gxn1(k), gxn1(k) – 1) + d(gxn1(k) – 1, gxm(k)) 

                                                                              < d(gxn1(k), gxn1(k) – 1) + . 

Letting n  1 and using (2.3) we get  ),(lim )()(1 kmkn
k

gxgxd . 

Therefore 

                                                                       ),(lim )()(1 kmkn
k

gxgxd .             (2.15) 

Similarly we obtain 

                                                                     ),(lim )()(2 kmkn
k

gxgxd .            (2.16) 

Again, the triangular inequality gives 

),(),(),(),( )(1)(1)(1)(11)(1)(1)()(1 kmkmkmknknknkmkn gxgxdgxgxdgxgxdgxgxd . 

and 

),(),(),(),( 1)()()()(1)(11)(11)(1)(1 kmknkmknknknkmkn gxgxdgxgxdgxgxdgxgxd . 

Letting k   in above inequality and using (2.3) and (2.15), we have 

0),(lim0 1)(1)( kmkn
k

gxgxd  

And 

00,(lim 1)(1)(1 kmkn
kk

gxgxd . 

Therefore, 

                                                           ),(lim 1)(1)(1 kmkn
kk

gxgxd                (2.17) 

 

Similarly we obtain 

                                                                     ),(lim 1)(1)(2 kmkn
kk

gxgyd               (2.18) 

Suppose n2(k) > n1(k), since   is nondecreasing and using (H3), (2.7) and (2.8) we have 

)),(( )()(1 kmkn gxgxd  =  )),(),,(( 1)(1)(1)(1)( 111111
kmkmknkn yxfyxfd  

                                            )),(),(( 1)(1)(1)(1)( 11 kmknkmkn gygydgxgxd  
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2

),(),( 1)(1)(1)(1)( 11 kmknkmkn gygydgxgxd
 

                                           )),(),(( 1)(1)(1)(1)( 11 kmknkmkn gygydgxgxd  

 

                                                         
2

),(),( 1)(1)(1)(1)( 21 kmknkmkn gygydgxgxd
       (2.19) 

Taking into account (2.15), (2.17), (2.18) and the fact that   is continuous, letting k →  in (2.19), we get 

)()),(),(()( 1)(1)(1)(1)( 11 kmknkmkn gygydgxgxd . 

As   is altering function, )(  > 0, the last inequality gives us 

.1)),(),((lim 1)(1)(1)(1)( 11 kmknkmkn
k

gygydgxgxd  

Since S , this means that 

                                                               0),(lim 1)(1)(1 kmkn
k

gxgxd              (2.20) 

 

and 

0),(lim 1)(1)(1 kmkn
k

gygyd  

From (2.17) and (2.20) we get  = 0 which is a contradiction. 

If n1(k) > n2(k) then considering  (d(gyn2(k); gym(k))) and adopting same procedure as above, we get 

0),(lim 1)(1)2 kmkn
k

gxgxd  

and 

                                                               0),(lim 1)(1)2 kmkn
k

gygyd                (2.21) 

 

From (2.18) and (2.21) we get  = 0 which is again a contradiction. Therefore, at least one of the sequences {gxn} and {gyn} must 

be a Cauchy sequence. This proves statement (i). 

To prove statement (ii), assume {gyn} is Cauchy sequence. If {gxn} is not a Cauchy sequence, then there exist    > 0 for which 

we can find subsequence {gxn(k)} such that 

                                                               d(gxn(k), gxm(k))                   (2.22) 

for n(k) > m(k) > k. Corresponding to m(k) choose n(k) in such a way that it is smallest integer with n(k) > m(k) and satisfying 

(2.22). Then 

                                                             d(gxn(k) -1,  gxm(k)) < .                  (2:23) 

By similar procedure as adopted earlier, we obtain 

                                              ),(lim )()( kmkn
k

gxgxd              (2.24) 

and 

                                                   ),(lim 1)(1)( kmkn
k

gxgxd               (2.25) 

Now using (H3) we have 

)),(( )()(1 kmkn gxgxd = ))),(),,((( 1)(1)(1)(1)( 111111
kmkmknkn yxfyxfd  
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)),(),(( 1)(1)(1)(1)( 11 kmknkmkn gygydgxgxd
2

),(),( 1)(1)(1)(1)( 11 kmknkmkn gygydgxgxd
.                                                                                                                                                             

(2.26) 

 

Since {gyn} is a Cauchy sequence, we have 

                                                           .0),(lim 1)(1)( kmkn
k

gygyd                  (2.27) 

Now    is continuous and nondecreasing and using (2.24), (2.25), (2.27); taking limit k →   in (2.26) we obtain 

2

0
)),(),((lim)( 1)(1)(1)(1)( kmknkmkn

k
gygydgxgxd  

             ).()),(),((lim 1)(1)(1)(1)( kmknkmkn
k

gygydgxgxd  

Since   is altering function, ( ) > 0, therefore, 

.1)),(),((lim 1)(1)(1)(1)( kmknkmkn
k

gygydgxgxd  

Since S , we have 

                                                                         .0),(lim 1)(1)( kmkn
k

gxgxd                (2.28) 

and 

.0),(lim 1)(1)( kmkn
k

gygyd  

Result (2.28) contradicts to (2.25). Hence sequence {gxn} is a Cauchy sequence. Similarly we can prove that if {gxn} is a Cauchy 

sequence then so is {gyn}. 

Hence sequences {gxn} and {gyn} both are Cauchy sequences. Thus statements (i) and (ii) are satisfied. This proves (c). 

Remark 2.1: The condition of convex on    in Lemma 2.1 may be replaced by affine. 

Theorem 2.2 Let (X, , d) be a partially ordered complete metric space and f : X  X → X,     g : X → X satisfy (H1) - (H3). 

Assume further that 

(i) g and f are continuous, 

(ii) g commutes with f. 

If there exists x0, y0  X such that 

gx0  f(x0, y0) and f(y0, x0)  gy0, 

then f and g have a coupled coincidence, that is, there exists x, y  X such that gx = f(x, y) and gy = f(y, x). 

Proof: Choose x0, y0  X such that gx0  f(x0, y0) and f(y0, x0)  gy0. 

Since f(X  X)  g(X), we can constructed sequences {gxn} and {gyn} defined by (2.1). Using Lemma 2.1, we have 

0),(lim 1nn
n

gxgxd  

and 

.0),(lim 1nn
n

gygyd  

Suppose there exists an integer n0 such that 

                                                                               d(gxn0 , gxn0+1) = 0                 (2:29) 

and 

                                                                                d(gyn0 , gyn0+1) = 0.                (2:30) 

Since g commutes with f, we have 
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g(gxn0) = g(gxn0+1) = g(f (xn0 , yn0)) = f (gxn0 , gyn0 ), 

and 

g(gyn0) = f (gyn0 , gxn0). 

Therefore, (gxn0 , gyn0) is a point of coupled coincidence. In another case, suppose there does not exists any n0 satisfying (3.29) 

and (3.30). From Lemma 2.1, we observe that sequences {gxn} and {gyn} defined by (2.1) are Cauchy sequences. Since X is 

complete, there exists       x, y  X such that 

,lim xgxn
n

  and  .lim ygyn
n

 

The continuity of g yields 

,)(lim gxgxg n
n

 and  .)(lim gygyg n
n

 

Since g commutes with f we have 

                                                                           g(gxn+1) = g(f (xn, yn)) = f(gxn, gyn)                          (2:31) 

and 

                                                                          g(gyn+1) = g(f (yn, xn)) = f (gyn, gxn)            (2:32) 

Taking limit as n →  in (2.31) and (2.32) and using the continuity of f, we get 

)),((lim)(lim 1 nn
n

n
n

yxfggxggx  =  ),(lim nn
n

gygxf  =  f (x, y) 

and 

)),((lim)(lim 1 nn
n

n
n

xyfggyggy  =  ),(lim nn
n

gxgyf  =  f (y, x). 

Thus gx = f(x, y) and gy = f(y, x). Therefore, g and f have a coupled coincidence. 

Corollary 2.1 Let (X, , d) be a partially ordered complete metric space and f : X  X → X be continuous mixed monotone 

mapping satisfying 

2

),(),(
)),(),(())),(),,(((

vyduxd
vyduxdvufyxfd  

where S  and   is convex (or affine) altering function. If there exists x0, y0  X such that 

x0   f(x0, y0)  and  f(x0, y0)  y0 

then f has a unique fixed point. 

Proof: Taking gx = x, in Theorem 2.2 and using Theorem 2.1, we obtain Corollary 2.1. 

 

Corollary 2.2 Let (X, , d) be a partially ordered complete metric space and f : X  X → X be continuous mixed monotone 

mapping satisfying 

2

),(),(
)),(),(()),(),,((

vyduxd
vyduxdvufyxfd  

where S . If there exists x0, y0  X such that 

x0  f(x0, y0) and f(y0, x0)  y0, 

then f has a unique coupled fixed point. 

Proof: Letting (t) = t, in Corollary 2.1, we obtain Corollary 2.2. 

The following example illustrates Corollary 2.2. 

 

Example 2.1 Let X = [ - a , a] with usual partial order  and usual metric d. Clearly (X, , d) is a partially ordered complete metric 

space. Let   (t) = t and β =2a/2a+α, obviously   is convex (affine) altering function and S .  Define f : X  X → X by 



K.L. Bondar et al, Journal of Global Research in Mathematical Archives, 1(2), February 2013, 23-32 

JGRMA 2013, All Rights Reserved   

   

 

.6,),( k
k

yx
yxf  

Then f is continuous and has mixed monotone property. For x, y, u, v  X, we have 

k

vu

k

yx
dvufyxfd ,),(),,((  

                                                                                          =  
k

vu

k

yx
 

                                                                                           .
11

vy
k

ux
k

 

                                                           d(x, u) + d (y, v))  =  |x – u| + | y – v|. 

),(),(2

2
)),(),(

vyduxda

a
vyduxd  

                                      
aaa

a

222

2
 

                                    = 
3

1
 

Therefore 

|)||(|
3

1

3

1

2

),(),(
)),(),(( vyux

vyduxd
vuduxd  

                                                                              |)||(|
1

vyux
k

 

                                                                              )).,(),,(( vufyxfd  

Since k  6, we can choose infinitely many x0, y0  X satisfying, 

                                                 (k   –  1) x0 + y0  0 and x0 + ( k – 1)y0  0              (2:33). 

This implies that 

k

yx
x 00

0  and  0

00 y
k

xy
. 

Therefore, 

x0  f (x0, y0) and f (y0, x0)  y0. 

Hence, by Corollary 2.2, f has a unique coupled fixed point. 

Remark 2.2 In example 2.1, x = 0 is the unique fixed point of f. 

Remark 2.3 For any x0, y0  X satisfying (2.33), define sequences {xn}, {yn} by 

xn+1 = f(xn, yn), yn+1 = f(yn, xn). 

Clearly we get 

.
2

;
2

1111 y
k

yy
k

x

n

n

n

n  

Since k  6, xn → 0 and yn → 0 as n → . Therefore, sequences {xn}, {yn} converges to a fixed point of f. 
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