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Abstract: The existence theorem of coupled coincidence point is proved. The main tool in the proof of result combines the ideas in the
contraction principle with those in the monotonic iterative technique. An example is given satisfying contractive type condition.

INTRODUCTION

The Banach contraction principle is the most celebrated fixed point theorem and has been generalized in various directions [1, 6,
7, 13]. Recently Agarwal [1], Bhaskar and Laxmikantham [4], Hussain [11], Nietz and Rodriguez-Lobez [13] presented some new
results in partially ordered metric spaces. D. Guo and Laxmikantham [9, 10] introduced the concept of mixed monotone operator
and the coupled fixed points. Later on several authors [5, 8, 11, 14, 15] have used this concept and proved the existence of coupled
fixed points for mixed monotone operators. Ciric and Laxmikantham [8] generalized the concept of mixed monotone to mixed g-
monotone and have obtained existence theorems for coupled fixed points.

In this paper, the existence theorem of coupled coincidence point is proved. The main tool in the proof of result combines the
ideas in the contraction principle with those in the monotonic iterative technique. An example is given satisfying contractive type
condition.

Recall that if (X, <) is a partially ordered set and f : X — X such that for x, y € X, x <y implies f(x) < f(y), then a mapping f is
said to be nondecreasing. Similarly, a nonincreasing mapping is defined. Bhaskar, Laxmikantham [2] introduced the following
notion of mixed monotone mapping and a coupled fixed point.

Definition 1.1[4] Let (X, <) be a partially ordered set and f : XxX — X. The mapping f is said to have mixed monotone property if
f is nondecreasing monotone in its first argument and is nonincreasing in its second argument, i.e. for any x, y € X,

X1, X2 € X, X< Xo =H(Xy, y) < f(x2, y);

Vi, Y2 € X, Y1 < Yo =f(x, y1) < (X, y2).

Definition 1.2[4] An element (X, y) € X x X is called a coupled fixed point of the mapping f: X x X — X if x=1(x,y), y =f(y,
X).

If there is x € X such that x = f(x, X) then x is called a fixed point of f. Let S denote the class of functions B:[0,0) — [0, 1)

which satisfies the condition g (t,)) —» 1 = t, — 0.

In this paper the existence of coupled coincidence points are obtained with the help of the altering functions. We recall the
definition of altering function.

Definition 1.3[6] An altering function is a function y: [0, c0) — [0, o) which satisfies following.
(@) w is continuous and nondecreasing.
(b) w(®)=0ifandonlyift=0.
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Definition 1.4 A function i : [0, o) — [0, ) is said to be convex if
ylati+ (1-at) <ay(t)+(1-a)y(t)
where t; t, € [0, ) and a € [0, 1].
Definition 1.5 A function : [0, ) — [0, o) is said to be affine if
ylatt(1-a)t) =ay () +(1-a) y(t)
where t; t, € [0, ) and a € [0, 1].
Altering functions have been used in metric fixed point theory in recent papers [6, 2, 12, 3].
2 Main Results
Analogous with definition 1.1, Laxmikantham and Ciric [8] introduced following concept of mixed g-monotone mapping.

Definition 2.1[8] Let (X, <) be a partially ordered set and f : XxX — X and g : XxX — X. We say that mapping f has mixed g-
monotone property if f is nondecreasing g-monotone in its first argument and is nonincreasing g-monotone in its second argument,
i.e. forany x,y € X,

X1, X2 € X, g(x)< g(x2)=f(xq, y) < f(x2, ¥);

¥ Y2 € X gyn)< g(y2)=H(x, y1) < f(x, y2).
Note that if g is identity mapping, then definition 2.1 reduces to definition 1.1.

Definition 2.2[8] An element (X, y) € Xx X is called a coupled coincidence point of the mappings f: XxX — X and g : XxX — X if
9(x) = f(x, ); 9(y) = f(y, %).

Definition 2.3[8] Let X be a nonempty set and f : XxX — X and g : XxX — X. fand g are said to have commutative property if
g(f(x, y)) = f(gx, gy), forall x, y € X.

Suppose (X, d) be a metric space and f : XxX — X, g : XxX — X such that f(X x X) = g(X). For any Xo, Yo € X, we can choose Xy,

y1 € X such that g(x;) = f(Xo, Yo) and g(y1) = f(yo, Xo). Similarly for x;, y; € X, there exists X2, Y2 € X such that g(x,) = f(Xy, y1)
and g(y,) = f(y,, x,). Continuing this process we can construct sequences {gx,} and {gx,}in X such that

OX%n+1 = f(Xn, Yn) @nd QYn+1 = F(Yn, Xn)- (2.1)
For the main result we need following assumptions.
(Hy) f(X x X) = g(X).
(H,) fhas mixed g-monotone property.
(H3) Forany x,y, u,v € X,
y (d(f(x, y), f(u, v))) < (d(gx, gu) + d(gy, gv)) w([d(gx, gu) + d(gy, gv)]/2)
where f € Sand is convex altering function.

Theorem 2.1 Let (X, d) be a metric space and f : XxX — X, g : XxX — X. Suppose (Hs) holds. If (X, y) € Xx X is a coupled
coinsidence of g and f then gx = gy. Moreover, if (x, y) and (xo, Yo) are coupled coinsidences of gand fthen gx =gxo =gy =

9Yo.

Proof: Suppose (x, y) € Xx X is a coupled coinsidence of g and f. Therefore,
9(x) =f(x, y); 9(y) = f(y, ).

From (Hs), we get

y(d((9x gy))) =y (d(f(x,y), T (y.X)))

< (8 (9% 09) + gy, gy | 2 (190 |

= f(2d(gx, gy))y (dgx, gy)).
Since / is an altering function and S € S, from the above inequality we get d(gx, gy) = 0 which implies  gx = gy.
Now suppose (x, y) and (x*, y°) are coupled coincidences of g and f. Therefore,

9(x) = f(x, y); 9(y) = f(y, ).
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and
g(x) =f(x", y); gy) = f(y", x).
Moreover we have gx = gy and gx” = gy". From (Hs) we get,

y(d(gx 9x))) =y d(f(xy), f(x,y)))

2

— A(d(gx, gx) +d(gx, gx‘))(//( d(gx, gx) ; d(gx, 9x) )

< p(d(gx, gx) +d(gy, gy‘»w(d (g%, 9x) +d(gy, 9y) J

= A(2d(gx, gx'))w (d(gx, gx')).

Since i is an altering function and £ € S, from the above inequality we get d(gx, gx’) = 0 which implies  gx = gx'.
This completes the proof.
For the main result we need the following lemma.

Lema 2.1 Let (X, <, d) be a partially ordered metric space and f: X x X — X, g : X = X. Assume (H;) - (Hs) hold. Suppose there
exists Xo, Yo € X such that

9%o < f(Xo, Yo) and f(yo, Xo) < gyo (2.2)
If the sequences {gx.}, {0yn; are defined by (2.1) then
@ {gx,} is nondecreasing and {gy.} is nonincreasing sequence.
(b) lim d(gx,,9x,.,) =0 (23)
rlll_rll d (gyn ’ gyml) = 0 (2'4)

(c) {ox,} and {gy.} are both Cauchy sequences.
Proof: Hypothesis (H;) implies that the sequences {gx,} and {gy.} defined by (2.1) exist.
(a) To prove
OXn+1 2 OXn (2.5)
and gYn+1 < QYn, (2.6)

we use mathematical induction. By (2.2), it is obvious that gx, < gx; and gy, > gy;. Thus (2.5) and (2.6) hold for n = 0. Suppose
now that (2.5) and (2.6) hold for some fixed n > 0. Then, since gx, < gX,+1 and gy, = gyn+1 and as f has g-mixed monotone
property,

O¥Xne1 = F(Xn, Yn) < F(Xne, Yn) < F(Xnet, Yner) = OXne,
¥n1 = f(Yn, Xo) 2 f(Yner, Xn) 2 f(Ynea, Xnea) = QYnea-
Thus by the mathematical induction, we conclude that (2.5) and (2.6) hold for
all n > 0. Therefore,
OXo<gX < 0% < .. SO < 0% < 2.7)
QYo QY12 0Yo> ... 20Yn = QYne1 = ... (2.8)
To prove (b), denote &, = d(gXn, 9Xn+1) + d(QYn, GYn+1). Using (Hz) we obtain

y(d(9%,, 9%.0)) = (A (F (X, 00 Vo) T(X00 1))

d(9%, 1, 9%,) +d(ay,,, qy, j

< ﬂ(d (anil, an) +d (gynfli ay, ))l//( 2
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< ﬁ(5 _1) ((5n 1))

Similarly we obtain,

O,
vy, 0,0 < 4] )
Since i/ is a convex function,
) d(9(x,,9%,,.) +d(9Y,, 9Y,.
W_n] _ (9(X,, 9%,.0) +d(9Y,, QY 0)
2 2
1 1
< Sw(d(x,9y,))+ 5w (d(Y,. 9Yna))
O O,
< 526w )12 g 52
1)
= ﬂ(5n_])t//[ "2‘1) (29)
Moreover, is nondecreasing and € S , hence we have &, /2<9, ,/2.
Therefore,
5y < 81 (2.10)

If there exists ng such that 8,9 = 0 then obviously (2.3), (2.4) hold.

In other case, suppose 8, = 0 for all # € N . Then taking into account (2.10), the sequence {5} is decreasing and bounded below.
So

limo, =r>0 (2.11)

N—c0

Assume r > 0, then from (2.9), we have
— 2 < B(6,,) <1. 2.12)

Letting n — 1 in the last inequality and by the fact that is continuous, we get 1< A(&,_1) <1.

Therefore

lim 4(5,) =1

Since f €S, lim,_,; A8, = 0 and this contradicts to our assumption that r > 0. Therefore  r =0 and hence (2.3) and (2.4) hold.
To prove (c), it is sufficient to prove following two statements.
(M At least one of sequences {gx,} and {gy,} is a Cauchy sequence.

(i) If one of sequences {gx,} and {gy,} is a Cauchy sequence then so is other.

If possible suppose that {gx.} and {gy»} both are not Cauchy sequences. Therefore there exists €, >0and €, > 0 for which
we can find subsequences {gXnu)} and {gynuz)} such that
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n(k,) > m(k,) > ki; d(gxn(kl) ) gxm(k1)) 2€
and
n(k,) >m(k,) >k,; d(gxn(kz) , ng(kz)) 2 €,.
Supposee=min{e,,e,}; k =max{k,,k,}, then for n(k) > m(k) > k,
d(9Xngo» IXmgo) = € and d(@Yng, Ymq) = € .
Corresponding to m(k) we can choose smallest ny(k) and n,(k) such that

ny(K) > m(k), ny(k) > m(k) satisfying d(gXn19, 9Xm@) = € ; d(QYn2(, IYmw) = €
and

d(IXnrgy -1 IXmgg) < € (2.13)

d(9Yna) -1+ BYmw) < €. (2.14) Using (2.13) and
the triangular inequality, we have

€ < d(9%n1(9, 9Xmk))
< d(9Xn1(» IXn1g - 1) + A(IXn1g - 10 X))
< d(9%n1y, Pnagy-1) + €.

Letting n — 1 and using (2.3) we get €< Il(imod(gxnl(k) s Kngy) <€E-
Therefore
lligld (Xoay s Pingiy) =€- (2.15)

Similarly we obtain

limod (9Xn20)» Pxingry) =€- (2.16)
Again, the triangular inequality gives
d(9Xpi0y » Pimeiy) < A (Xagiy s Pinggor1) + A (Xa)-10 PXingry-2) + A (IXigey1s Iy ) -
and
d (gxnl(k)—li ng(k)—l) <d (gxnl(k)—11 gxnl(k)) +d (gxnl(k) ) ng(k)) +d (gxn(k) , ng(k)—l) :
Letting k — oo in above inequality and using (2.3) and (2.15), we have

e< O + I!lm d (gxn(k)—l’ gxm(k)_l) + O

And
Iki_rpk d (X0 -1r Pngos < 0+ €+0.
Therefore,
!(im< d (X yk)-11 Pnry-1) = € (2.17)
Similarly we obtain
M d(9Yno)-17 Pmy1) = € (2.18)

Suppose ny(K) > ny(k), since is nondecreasing and using (Hz), (2.7) and (2.8) we have
w(d(9X,, ) X)) = d(f (th(k)-v ynl(k)—l)' f (Xmll(k)—l' yml(k)—l))
< BA(9%, 110 Pingya) + (Y r, 9-15 WY imcy-1))
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(d (9%, )10 Piny-1) T A(9Y 0, 6001 Yimgoy1) J
v 2

< B (gxnl(k)—li OXp)a) + (gynl(k)—l! Y1)

(2.19)

( d (gxnl(k)—l1 gxm(k)—l) +d (gynz(k)—l , gym(k)—l) j
v 2

Taking into account (2.15), (2.17), (2.18) and the fact that y/ is continuous, letting k — o in (2.19), we get
y(€) < pU (gxnl(k)—li gxm(k)—l) +d (gynl(k)—li gym(k)—l)) <y(e).
As y is altering function, y/(€) > 0, the last inequality gives us
lm A (gxnl(k)—l1 gxm(k)—l) +d (gynl(k)—l’ gym(k)—l)) =1
Since f € S, this means that

ll(m d (9, 41+ Pmgi-1) =0 (2.20)

and
I!'_rgo d(gynl(k)—l’ gym(k)—l) =0

From (2.17) and (2.20) we get € =0 which is a contradiction.
If ny(k) > ny(k) then considering (d(gyn2(K); 9Yma)) and adopting same procedure as above, we get

Ml d (9,11 Pg-1) =0
and

Im d(gYr-1:9Yma1) =0 (221)

From (2.18) and (2.21) we get € =0 which is again a contradiction. Therefore, at least one of the sequences {gy.} and {gyn} must
be a Cauchy sequence. This proves statement (i).

To prove statement (ii), assume {gy,} is Cauchy sequence. If {gx,} is not a Cauchy sequence, then there exist & > 0 for which
we can find subsequence {gxn} such that

d(gXn, GXmeo) = € (2.22)

for n(k) > m(k) > k. Corresponding to m(k) choose n(k) in such a way that it is smallest integer with n(k) > m(k) and satisfying
(2.22). Then

d(gXny -1, PXm) < € (2:23)
By similar procedure as adopted earlier, we obtain
L'[L]O d(9%, ks X)) =€ (2.24)
and
I!lmo d (9%, k)11 Pingy1) =€ (2.25)

Now using (Hs) we have

w (d (9%, 1y » Piniy)) = (d (f (th(k)—p ynl(k)—l)’ f (an(k)—u yml(k)~1)))
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d (gxnl(k)—ll gxm(k)—l) +d (gynl(k)—li gym(k)—l) J
5 .

< B(A(9X,, g1 PXingy1) + d(9Yn, )-10 WY imcy-1)) ‘//(

(2.26)

Since {gy.} is a Cauchy sequence, we have
Im d(9Yn1: WYmgo-1) =0 (227)

Now i is continuous and nondecreasing and using (2.24), (2.25), (2.27); taking limit k — o in (2.26) we obtain

. e +0
w(e) < l'('gl BA(9% 0010 PXingoy-1) + A(IYngwy-as gym(k)—1))V/[TJ

< Im AA(9% w10 Pngo-1) +d(DYng19 Wmgo-21) W/ (€)-
Since yis altering function, y(€) > 0, therefore,
Im A(d (%015 PKingy-1) + A(Yngy-10 Wmgoa)) =1
Since f €S, we have
I!m d (9% 01 PXingry-1) = 0. (2.28)
and
lim d(QYnge 1> Qg 1) = 0.

Result (2.28) contradicts to (2.25). Hence sequence {gx,} is a Cauchy sequence. Similarly we can prove that if {gx,} is a Cauchy
sequence then so is {gyn}-

Hence sequences {gx,} and {gy,} both are Cauchy sequences. Thus statements (i) and (ii) are satisfied. This proves (c).
Remark 2.1: The condition of convex on i in Lemma 2.1 may be replaced by affine.

Theorem 2.2 Let (X, <, d) be a partially ordered complete metric space and f : X x X — X, g : X — X satisfy (Hy) - (Hs).
Assume further that

(i) g and f are continuous,
(if) g commutes with f.
If there exists Xq, Yo € X such that
9Xo < f(Xo, Yo) and f(yo, Xo) < @Yo,
then f and g have a coupled coincidence, that is, there exists x, y € X such that gx = f(x, y) and gy = f(y, x).
Proof: Choose X, Yo € X such that gxo < f(Xo, Yo) and (Yo, Xo) < gVo.
Since f(X x X) < g(X), we can constructed sequences {gx,} and {gy.} defined by (2.1). Using Lemma 2.1, we have

Ilm d (gxnl an+l) = 0
and

rl]l_rﬂo d(gyn’ gyn+l) = 0

Suppose there exists an integer nq such that

d(9%no , 9Xno+1) =0 (2:29)
and

d(9Yno , G¥no+1) = 0. (2:30)
Since g commutes with f, we have
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9(9%n0) = 9(9Xno+1) = 9(f (Xno » Yno)) = (I%no » GYno ),
and

9(9Yno) = f (9Yno » GXno)-

Therefore, (g%no , QYno) iS @ point of coupled coincidence. In another case, suppose there does not exists any n, satisfying (3.29)
and (3.30). From Lemma 2.1, we observe that sequences {gx,} and {gy.} defined by (2.1) are Cauchy sequences. Since X is
complete, there exists X,y € X such that

lim gx, =x, and lim gy, =Y.
n—w

n—o

The continuity of g yields
lim g(gx,) = gx and lim g(gy,) = gy.

Since g commutes with f we have

9(9%n+1) = 9(f (Xn, Yn)) = f(9%n, GYn) (2:31)
and

9(9Yn+1) = 9(F (Yn, Xn)) = f (QYn, GXn) (2:32)
Taking limit as n — oo in (2.31) and (2.32) and using the continuity of f, we get

gx = lim g(gx,.,) lim g(f(x,,y,)) = lim f(gx,,gy,) = f(xy)

and
gy =1lim g(gy,.) = Im g(f(y,,x,)) = Im f(gy,,gx,) = %).

Thus gx = f(x, y) and gy = f(y, X). Therefore, g and f have a coupled coincidence.

Corollary 2.1 Let (X, <, d) be a partially ordered complete metric space and f : X x X — X be continuous mixed monotone
mapping satisfying

p(d(f(xy), f ) Sﬂ(d(X,U)+d(y,v))y/(d(x'u);d(y'v)j

where £ €S and y is convex (or affine) altering function. If there exists Xo, Yo € X such that

Xo < f(Xo, Yo) and (X, Yo) < Vo
then f has a unique fixed point.

Proof: Taking gx = x, in Theorem 2.2 and using Theorem 2.1, we obtain Corollary 2.1.

Corollary 2.2 Let (X<, d) be a partially ordered complete metric space and f : X x X — X be continuous mixed monotone
mapping satisfying

d(fy) fuv) Sﬂ(d(x,u)+d(y,V))t//(d(X’U);d(y,V))

where S € S . If there exists X, Yo € X such that

Xo < f(Xo, yo) and f(yo, Xo) < Yo,
then f has a unique coupled fixed point.
Proof: Letting y(t) =t, in Corollary 2.1, we obtain Corollary 2.2.

The following example illustrates Corollary 2.2.

Example 2.1 Let X = [ - a, a] with usual partial order < and usual metric d. Clearly (X, <, d) is a partially ordered complete metric
space. Let i (t) = tand g =2a/2a+a, obviously v is convex (affine) altering function and 5 € S . Define f: X x X — X by
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f(x,y):%,kz&

Then f is continuous and has mixed monotone property. For X, y, u, v € X, we have

g Xy u-v
d(f(x,y), f@hv)-d( T ]

X—y u-v

K k

g-ﬁx—q+£W—w.
k k

dix, uy+d(y,v)) = x—ul+[y—-v|.

2a

AW+ = w  d(y.v)

. 2a

~ 2a+2a+?2a

_1

3
Therefore
ﬂd«x,u)+d(u,v»[d‘x’“);d(y’v)j > 22(x-ul+ly-v)

> L(lx-ul+]y-v)

> d(f(xy), f(uv)).
Since k > 6, we can choose infinitely many Xo, yo € X satisfying,
(k — D xo+yo<0andxo+(k—1)y; >0
This implies that
Xo = Yo

X, <
o7k k

Therefore,
Xo < f (%o, Y0) and f (Yo, Xo) < Vo,
Hence, by Corollary 2.2, f has a unique coupled fixed point.
Remark 2.2 In example 2.1, x = 0 is the unique fixed point of f.
Remark 2.3 For any X, Yo € X satisfying (2.33), define sequences {x,}, {yn} by
Xns1 = f(kn, Yn), Yosa = T(Yn, X).

2\" 2\"
X :_(E) Yii Ynu :(EJ Y-

Clearly we get

Since k > 6, x, — 0 and y, — 0 as n — 0. Therefore, sequences {x,}, {yn} converges to a fixed point of f.
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