LOWER AND UPPER BOUNDS OF A LATTICE THREE-PARTICLE MODEL HAMILTONIAN

Tulkin Rasulov

Abstract


-

Full Text:

PDF

References


D. Mattis. The few-body problem on a lattice.Rev. Modern Phys., 58:2 (1986), 361-379.

A. I. Mogilner. Hamiltonians in solid state physics as multiparticle discrete Schrödinger operators: problems and results. Advances in Sov. Math., 5 (1991), 139-194.

V. A. Malishev, R. A. Minlos. Linear infinite-particle operators. Translations of Mathematical Monographs. 143, AMS, Providence, RI, 1995.

B. V. Karpenko, V. V. Dyakin, G. A. Budrina. Two electrons in Hubbard model. Fiz., Met., Metalloved., 61:4 (1986), 702-706.

M.Muminov, H.Neidhardt, T.Rasulov. On the spectrum of the lattice spin-boson Hamiltonian for any coupling: 1D case. Journal of Mathematical Physics, 56 (2015), 053507.

T.H.Rasulov. On the finiteness of the discrete spectrum of a 3x3 operator matrix. Methods of Functional Analysis and Topology, 22:1 (2016), 48-61.

T.Kh.Rasulov. Branches of the essential spectrum of the lattice spin-boson model with at most two photons. Theoretical and Mathematical Physics, 186:2 (2016), 251-267.

M.Muminov, H.Neidhardt, T.Rasulov. On the spectrum of the lattice spin-boson Hamiltonian for any coupling: 1D case. Journal of Mathematical Physics, 56 (2015), 053507.

M.I.Muminov, T.H.Rasulov. On the eigenvalues of a 2x2 block operator matrix. Opuscula Mathematica. 35:3 (2015), 369-393.

M.I.Muminov, T.Kh.Rasulov. An eigenvalue multiplicity formula for the Schur complement of a 3x3 block operator matrix. Siberian Math. J., 56:4 (2015), P. 878-895.


Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

CC BY-SA

Free Web Counter