THRESHOLD EFFECTS FOR A FAMILY OF 2 X 2 OPERATOR MATRICES

Tulkin Rasulov, Elyor Dilmurodov

Abstract


-


Full Text:

PDF

References


S.Albeverio, S.N.Lakaev, T.H.Rasulov. On the spectrum of an Hamiltonian in Fock space. Discrete spectrum asymptotics. J. Stat. Phys., 127 (2007), no. 2, 191-220.

K.O.Friedrichs. Perturbation of spectra in Hilbert space. Amer. Math. Soc., Providence, Rhole Island, 1965.

M.Huebner, H.Spohn. Spectral properties of spin-boson Hamiltonian. Annl. Inst. Poincare, 62 (1995), no. 3, 289-323.

R.A.Minlos, H.Spohn. The three-body problem in radioactive decay: the case of one atom and at most two photons. Topics in Statistical and Theoretical Physics. Amer. Math. Soc. Transl., Ser. 2, 177, AMS, Providence, RI, (1996), 159-193.

M.Muminov, H.Neidhardt, T.Rasulov. On the spectrum of the lattice spin-boson Hamiltonian for any coupling: 1D case. Journal of Mathematical Physics, 56 (2015), 053507.

T.Kh.Rasulov. Branches of the essential spectrum of the lattice spin-boson model with at most two photons. Theoretical and Mathematical Physics, 186 (2016), no. 2, 251-267.

T.Kh.Rasulov. On the number of eigenvalues of a matrix operator. Siberian Math. J., 52 (2011), no. 2, 316-328.

T.H.Rasulov. On the finiteness of the discrete spectrum of a operator matrix. Methods Funct. Anal. Topology, 22:1 (2016), 48-61.

H.Spohn. Ground states of the spin-boson Hamiltonian. Comm. Math. Phys., 123 (1989), 277-304.


Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

CC BY-SA

Free Web Counter