

Journal of Global Research in Mathematical Archives

ISSN 2320 - 5822

RESEARCH PAPER

Available online at http://www.jgrma.info

1-movable Perfect Domination in Graphs

Jocecar Lomarda-Hinampas, Renario G. Hinampas, Jr., and Rezel Jay Apog

College of Teacher Education and Advanced Studies
Bohol Island State University-Main Campus
CPG North Avenue, 6300 Tagbilaran City, Bohol, Philippines
email: jlomardz@yahoo.com
email: renariojr.hinampas@yahoo.com

Abstract

A nonempty subset S of V(G) is a 1-movable perfect dominating set of G if S = V(G) or $S \subset V(G)$ is a perfect dominating set of G and for every $v \in S$, there exists $u \in (V(G) \setminus S) \cap N_G(v)$ such that $(S \setminus \{v\}) \cup \{u\}$ is a perfect dominating set of G. The smallest cardinality of a 1-movable perfect domination set of G is called 1-movable perfect dominating set of G, denoted by $\gamma^1_{mp}(G)$. A 1-movable perfect dominating set of G with cardinality equal to $\gamma^1_{mp}(G)$ is called γ^1_{mp} -set of G. This paper characterizes of the 1-movable perfect dominating sets in the join and corona of two connected graphs.

Mathematics Subject Classification: 05C69

Keywords: Domination, perfect domination, 1-movable domination, 1-movable perfect domination

1 Introduction

Let G = (V(G), E(G)) be a graph and $v \in V(G)$. The open neighborhood of v is the set $N_G(v) = N(v) = \{u \in V(G) : uv \in E(G)\}$. If $S \subseteq V(G)$, then the open neighborhood of S is the set $N_G(S) = N(S) = \bigcup_{v \in S} N_G(v)$. The join of two graphs G and G denoted by G + H is the graph with vertex-set $V(G + H) = V(G) \stackrel{\bullet}{\cup} V(H)$ and edge-set $E(G + H) = E(G) \stackrel{\bullet}{\cup} E(H) \cup \{uv : u \in V(G), v \in V(H)\}$. The corona of two graphs G and G and G denoted by $G \circ G$, is the graph obtained by taking one copy of G of order G and G and G and then joining the G it vertex of G to every vertex in the G the copy of G are every G and G are joined or attached to the vertex G.

A subset S of V(G) is a dominating set of G if for every $v \in V(G) \setminus S$, there exists $u \in S$ such that $uv \in E(G)$. A nonempty subset S of V(G) is a perfect

dominating set of G if S is a dominating set of G and every vertex $v \in V(G) \setminus S$ is adjacent to exactly one vertex in S. The perfect domination number of G denoted by $\gamma_p(G)$, is the smallest cardinality of a perfect dominating set of G.

A nonempty set $S \subseteq V(G)$ is a 1-movable dominating set of G if S is a dominating set of G and for every $v \in S$, $S \setminus \{v\}$ is a dominating set of G or there exists a vertex $u \in (V(G) \setminus S) \cap N_G(v)$ such that $(S \setminus \{v\}) \cup \{u\}$ is a dominating set of G. The 1-movable domination number of a graph G, denoted by $\gamma_m^1(G)$, is the smallest cardinality of a 1-movable dominating set of G. A 1-movable dominating set of G with cardinality equal to $\gamma_m^1(G)$ is called γ_m^1 -set of G.

A nonempty set $S \subseteq V(G)$ is a 1-movable perfect dominating set of G if S = V(G) or $S \subset V(G)$ is a perfect dominating set of G and for every $v \in S$ there exists $u \in (V(G) \setminus S) \cap N_G(v)$ such that $(S \setminus \{v\}) \cup \{u\}$ is a perfect dominating set of G. The smallest cardinality of a 1-movable perfect dominating set of G is called 1-movable perfect domination number of G, denoted by $\gamma^1_{mp}(G)$. A 1-movable perfect dominating set of G with cardinality equal to $\gamma^1_{mp}(G)$ is called γ^1_{mp} -set of G.

This paper presents some results of 1-movable perfect dominating sets in the join and corona of graphs.

2 Results

Remark 2.1 For every connected graph G of order $n \geq 2$, $1 \leq \gamma_{mp}^1(G) \leq n$.

Theorem 2.2 Let G be a connected nontrivial graph. Then $\gamma_{mp}^1(G) = 1$ if and only $G = K_2$ or $G \cong K_2 + H$ for some graph H.

Proof: Suppose that $\gamma_{mp}^1(G) = 1$. Then G has a 1-movable perfect dominating set say S with |S| = 1. If |V(G)| = 2, then $G = K_2$. Suppose $|V(G)| \ge 3$. Let $S = \{a\}$ for some $a \in V(G)$. Since S is a 1-movable perfect dominating set of G, there exists $u \in (V(G) \setminus S) \cap N_G(a)$ such that $(S \setminus \{a\}) \cup \{u\} = \{u\}$ is a perfect dominating set of G. So, $ua \in E(G)$. Take $V(K_2) = \{u, a\}$ and $\langle V(G) \setminus V(K_2) \rangle = H$. Then $G = K_2 + H$.

For the converse, suppose first that $G = K_2$. Clearly $S = \{a\} \subseteq V(K_2)$ is a 1-movable perfect dominating set of K_2 . Suppose that $G = K_2 + H$. Let $V(K_2) = \{a, b\}$ and $S = \{a\}$ for some $a, b \in G$. Then S is a dominating set of G. Let $y \in V(G) \setminus S$. Then $|N_G(y) \cap lS| = 1$. Then S is a perfect dominating set of G. Now, $S \setminus \{a\} \cup \{b\} = \{b\}$ is a dominating set of G. Let $w \in V(G) \setminus \{b\}$. Then $|N_G(w) \cap \{b\}| = 1$. Hence, $S \setminus \{a\} \cup \{b\} = \{b\}$ is a perfect dominating set of G. Since |S| = 1, S is a γ^1_{mp} -set of G. Thus, $\gamma^1_{mp}(G) = |S| = 1$. \square

Corollary 2.3 For every complete graph of order $n \geq 2$, $\gamma_{mp}^1(K_n) = 1$.

Theorem 2.4 Let G and H be connected nontrivial graphs. Then $S \subseteq V(G+H)$ is a 1-movable perfect dominating set of G+H if and only if one of the following holds:

- (i) S = V(G + H)
- (ii) |S| = 1 and either S is a 1-movable perfect dominating set of G S is a dominating set of G and there exists $y \in V(H)$ which dominates H.
- (iii) |S| = 1 and either S is a 1-movable perfect dominating set of H or S is a dominating set of H and there exists $a \in V(G)$ which dominates G.

Proof: Suppose that S is a 1-movable perfect dominating set of G+H. If S=V(G+H), then (i) holds. Suppose $S\subset V(G+H)$. Since S is a perfect dominating set of G+H, $S\subseteq V(G)$ or $S\subseteq V(H)$. Suppose first that $S\subseteq V(G)$. Then S is a dominating set of G. Since S is a perfect dominating set, |S|=1. Let $S=\{v\}$ for some $v\in V(G)$. Since S is a 1-movable perfect dominating set of G+H, there exists $u\in (V(G+H)\setminus S)\cap N_{G+H}(v)$ such that $(S\setminus\{v\})\cup\{u\}=\{u\}$ is a dominating set of G+H. If $u\in (V(G)\setminus S)\cap N_G(v)$, then $S\setminus\{v\}\cup\{u\}$ is a dominating set of G. Hence, S is a 1-movable dominating set of G. Suppose $u\notin (V(G)\setminus S)\cap N_G(v)$. Then $u\in V(H)$. Take y=u. Hence, $S\setminus\{v\}\cup\{y\}=\{y\}$ is a dominating set of H. Thus, (ii) holds. Similarly, (iii) holds if $S\subseteq V(H)$.

For the converse, suppose (i) holds. By definition, S is a 1-movable perfect dominating set of G. Suppose (ii) holds. Suppose first that S is a 1-movable dominating set of G and |S| = 1. Let $S\{a\}$ for some $a \in V(G)$. Then S is a dominating set of G + H. Let $y \in V(G + H) \setminus S$. Then $|N_{G+H}(y) \cap S| = 1$. Thus, S is a perfect dominating set of of G + H. Since is S is a 1-movable perfect dominating set of G + H, there exists $b \in v(G) \setminus S \cap N_G(a)$ such that $S \setminus \{a\} \cup \{b\} = \{b\}$ is a dominating set of G. Hence, $S \setminus \{a\} \cup \{b\}$ is a dominating set of G + H. Let $w \in V(G + H) \setminus S \setminus \{a\} \cup \{b\}$. Then $|N_{G+H}(w) \cap S \setminus \{a\} \cup \{b\}| = 1$. Thus, $S \setminus \{a\} \cup \{b\}$ is a dominating set of G+H. Suppose S is not a 1-movable dominating set of G+H. By assumption, there exists $y \in V(H)$ which dominates H. Thus, $S \setminus \{a\} \cup \{y\} = \{y\}$ is a dominating set of H and hence of G+H. Let $q \in V(G+H) \setminus S \setminus \{a\} \cup \{y\}$. Then $|N_{G+H}(q) \cap [S \setminus \{a\} \cup \{y\}]| = 1$. Hence, $S \setminus \{a\} \cup \{y\}$ is a perfect dominating set of G + H. Therefore, S is a 1-movable perfect domnating set of G + H. Similarly, if (iii) holds then S is a 1-movable perfect dominating set of G + H.

Corollary 2.5 Let G and H be connected nontrivial graphs. Then

$$\gamma_{mp}^{1}(G+H) = \begin{cases} 1, & \text{if } \gamma(G) = 1 = \gamma(H) \text{ or } \gamma_{m}^{1}(G) = 1 \text{ or } \gamma_{m}^{1}(H) = 1 \\ |V(G+H)|, & \text{otherwise} \end{cases}$$

Theorem 2.6 Let H be a connected nontrivial graph. Then $S \subseteq V(K_1 + H)$ is a 1-movable perfect dominating set of $K_1 + H$ if and only if one of the following holds:

- (i) $S = V(K_1 + H)$.
- (ii) $S = V(K_1)$ and there exists $y \in V(H)$ which dominates H.
- (iii) S is a dominating set in H with |S| = 1.

Proof: Let $V(K_1) = \{x\}$ and suppose S is a 1-movable perfect dominating set of $K_1 + H$. If $S = V(K_1 + H)$, then (i) holds. Suppose $S \neq V(K_1 + H)$. Since S is a perfect dominating set of $K_1 + H$, $S = V(K_1)$ or $S \subseteq V(H)$. Suppose first that $S = V(K_1)$. Since S is a 1-movable perfect dominating set of $K_1 + H$ there exists $y \in V((K_1 + H) \setminus S) \cap N_{K_1 + H}(x)$ such that $S \setminus \{x\} \cup \{y\} = \{y\}$ is a perfect dominating set of $K_1 + H$. Since $Y \in V(H)$, $Y \in V(H)$ is a dominating set of $Y \in V(H)$ and $Y \in V(H)$ is a dominating set of $Y \in V(H)$ and $Y \in V(H)$ is a dominating set of $Y \in V(H)$ and $Y \in V(H)$ is a dominating set of $Y \in V(H)$ and $Y \in V(H)$ is a dominating set of $Y \in V(H)$ and $Y \in V(H)$ is a dominating set of $Y \in V(H)$ and $Y \in V(H)$ and $Y \in V(H)$ is a dominating set of $Y \in V(H)$ and $Y \in V(H)$ is a dominating set of $Y \in V(H)$ and $Y \in V(H)$ is a dominating set of $Y \in V(H)$ and $Y \in V(H)$ is a dominating set of $Y \in V(H)$ and $Y \in V(H)$ is a dominating set of $Y \in V(H)$ and $Y \in V(H)$ is a dominating set of $Y \in V(H)$ and $Y \in V(H)$ is a dominating set of $Y \in V(H)$ and $Y \in V(H)$ is a dominating set of $Y \in V(H)$ and $Y \in V(H)$ is a dominating set of $Y \in V(H)$ and $Y \in V(H)$ is a dominating set of $Y \in V(H)$ and $Y \in V(H)$ is a dominating set of $Y \in V(H)$ and $Y \in V(H)$ is a dominating set of $Y \in V(H)$ and $Y \in V(H)$ is a dominating set of $Y \in V(H)$ and $Y \in V(H)$ is a dominating set of $Y \in V(H)$ is a dominating set of $Y \in V(H)$ and $Y \in V(H)$ is a dominating set of $Y \in V(H)$ is a dominating set

For the converse, suppose (i) holds. By definition, S is a 1-movable perfect dominating set of G. Suppose (ii) holds. Then S is a dominating set of $K_1 + H$. Let $w \in V(H)$. Then $|N_{K_1+H}(w) \cap S| = 1$. Hence, S is a perfect dominating set of $K_1 + H$. Now, $S \setminus \{x\} \cup \{y\} = \{y\}$ is a dominating set of H and hence of $K_1 + H$. Let $q \in V(K_1 + H) \setminus S \setminus \{x\} \cup \{y\}$. Then $|N_{K_1+H}(q) \cap S \setminus \{x\} \cup \{y\}| = 1$. Hence, $S \setminus \{x\} \cup \{y\}$ is a perfect dominating set of H and hence of H

Corollary 2.7 Let H be a connected nontrivial graph.

$$\gamma_{mp}^{1}(K_1 + H) = \begin{cases} 1, & \text{if } \gamma(H) = 1\\ |V(K_1 + H)|, & \text{otherwise} \end{cases}$$

Theorem 2.8 Let G and H be connected nontrivial graphs. Then $C \subseteq V(G \circ H)$ is a 1-movable perfect dominating set of G + H if and only if $C = V(G \circ H)$ or $C = \bigcup_{v \in V(G)} D_v$ with $|D_v| = 1$ and D_v is a 1-movable dominating set in H^v for all $v \in V(G)$.

Proof: Suppose that C is a 1-movable perfect dominating set of G. Suppose $C = V(G \circ H)$. Then were are done. Suppose $C \neq V(G \circ H)$. Let $x \in C$ and suppose $x \in C \cap V(G)$. Then there exists $y \in N(x)$ such that $|N(y) \cap C| = 1$. Thus $N_{G \circ H}(z) \cap C = \emptyset$ for all $z \in V(H^y)$. This contradicts the assumption. Hence $x \in D_v$ for all $v \in V(G)$. Thus, $C = \bigcup_{v \in V(G)} D_v$. Since C is a perfect

dominating set, $|N_G(w) \cap D_v| = 1$ for all $w \in V(G)$. This means that $|D_v| = 1$. Since C is a 1-movable perfect dominating set of $G \circ H$, D_v is a 1-movable dominating set of H^v for all $v \in V(G)$.

For the converse, Suppose that $C = V(G \circ H)$. By definition, C is a 1-movable perfect dominating set of $G \circ H$. Suppose that $C = \bigcup_{v \in V(G)} D_v$, where

 $|D_v|=1$ and D_v is a 1-movable dominating set of H^v for each $v \in V(G)$. Clearly, C is a perfect dominating set of $G \circ H$. Let $v \in C$. Since $|D_v|=1$ for all $v \in V(G)$, $C \setminus \{v\} \cup \{u\}$ are perfect dominating sets of $G \circ H$ for some $u \in V((G \circ H) \setminus C) \cap N(v)$. Therefore, C is a 1-movable perfect dominating set of $G \circ H$. \square

Corollary 2.9 For every connected nontrivial graphs G and H,

$$\gamma^1_{mp}(G \circ H) = \begin{cases} 1, & \text{if } \gamma^1_m(H) = 1 \\ |V(G \circ H)|, & \text{otherwise} \end{cases}$$

References

- [1] J. Blair, R. Gera and S. Horton. Movable dominating sensor sets in networks. Journal of Combinatorial Mathematics and Combinatorial Computing, 77 (2011) ,103-123.
- [2] R.G. Hinampas, Jr., and S.R. Canoy, Jr. 1-movable domination in graphs. Applied Mathematical Sciences, 8 (2014), no. 172, 8565-8571.
- [3] B.F. Tubo and S.R. Canoy, Jr. Restrained perfect domination in graphs. International Journal of Mathematical Analysis, 9(2015),no.25,1231-1240.
- [4] R.G. Hinampas, Jr., and S.R. Canoy, Jr. 1-movable independent domination in graphs. International Journal of Mathematical Analysis, 9(2015),no.2,73-80.

- [5] R.G. Hinampas, Jr., and S.R. Canoy, Jr. Movability of Dominating, Independent Dominating and Doubly Connected Dominating Sets in the Composition of Graphs. Applied Mathematical Sciences, 9(2015),no.85,4233-4243.
- [6] R.G. Hinampas, Jr., J.Lomarda-Hinampas and Joann P. Reformina. 1-movable Restrained Domination in Graphs. Global Journal of Pure and Applied Mathematics, 12(2016),no.6,5245-5252.
- [7] R.G. Hinampas, Jr., J.Lomarda-Hinampas and A.R.Dahunan. 1-movable Independent Outer-connected Domination in Graphs. Global Journal of Pure and Applied Mathematics, 13(2017),no.1,41-49.
- [8] R.G. Hinampas, Jr. Realization problems in 1-movable independent and 1-movable doubly connected domination in graphs. Global Journal of Pure and Applied Mathematics, 13(2017),no.6,2457-2462.
- [9] J. Lomarda, and S.R. Canoy, Jr. 1-movable total dominating sets in graphs. International Journal of Mathematical Analysis, 8 (2014), no. 55, 2703-2709.
- [10] J. Lomarda, and S.R. Canoy, Jr. 1-movable connected dominating sets in graphs. Applied Mathematical Sciences, 9 (2015), no. 11, 507-514.
- [11] J. Lomarda, and S.R. Canoy, Jr. 1-movable Total Dominating, Connected Dominating and Double Dominating Sets in the Composition of Graphs.International Journal of Mathematical Analysis, 9 (2015), no. 41,2037-2044.
- [12] J. Lomarda-Hinampas. Some realizable problems in the movability of connected and double domination in graphs. Global Journal of Pure and Applied Mathematics, 13(2017),no.6,1663-1668.
- [13] J.L. Hinampas, R.G. Hinampas, Jr., L.C. Canada. Movable Total outer-connected dominating sets in graphs. Far East Journal of Mathematical Sciences. 102(2017),no.11,2713-2725.