NEUTROSOPHIC MAGDM BASED ON ENTROPIES OF DEGREES α, β AND R-NORM

1A. Solairaju, and 2M. Shajahan
1Associate Professor, PG and Research Department of Mathematics, Jamal Mohamed College (Autonomous), Tiruchirappalli, India, Email:solajmc@gmail.com
2Part-time Research Scholar, Department of Mathematics, Jamal Mohamed College (Autonomous), Tiruchirappalli, India

Abstract: Yager [1988] developed the ordered weighted averaging (OWA) operator and applied in decision making problems. Xu & Yager [2006] developed some geometric aggregation operators, such as the intuitionistic fuzzy weighted geometric (IFWG) operator, the intuitionistic fuzzy hybrid geometric (IFHG) operator and gave an application of the IFHG operator to multiple attribute group decision making with intuitionistic fuzzy information. Xu [2007e] and Xu & Chen [2007a, 2007b] also developed some arithmetic aggregation operators for decision making problems. One important issue in the theory of ordered weighted averaging (OWA) operators is the determination of the associated weights. One of the first approaches, suggested in the literature is a special class of OWA operators having maximal Shannon entropy of the OWA weights for a given level of orness; algorithmically it is based on the solution of a constrained optimization problem. The MAGDM problems have investigated under neutrosophic fuzzy environment, and proposed an approach to handling the situations where the attribute values are characterized by NFSs, and the information about attribute weights completely unknown. The proposed approach first fuses all individual neutrosophic fuzzy decision matrices into the collective neutrosophic fuzzy decision matrix by using the NFOWA operator. Then the obtained attribute weights and the NFHA operator have used to get the overall neutrosophic fuzzy values of alternatives. In this paper, the proposed approach in this work not only can comfort the influence of unjust arguments on the decision results, but also avoid losing or distorting the original decision information in the process of aggregation. Thus, the proposed approach provides an effective and practical way to deal with multi-person multi-attribute decision making problems, where the attribute values are characterized by NFSs and the information about attribute weights is partially known. The suitable alternative is selected through the algorithm from the given neutrosophic information in which the unknown weights are derived based upon normal distribution.

Section 1 - Previous Literatures:

The interval-valued intuitionistic fuzzy sets (IVIFSs), introduced by Atanassov & Gargov[1989] which is characterized by a membership function and a non-membership function whose values are rather than exact numbers, are a very useful means to describe the decision information in the process of decision making. Wei & Wang [2007] respectively, developed some geometric aggregation operators and applied them to MAGDM with interval-valued intuitionistic fuzzy information. In this work, based on the one important issue in the theory of ordered weighted averaging (OWA) operators suggested by O’Hagan,(1988) a special class of OWA operators having maximal entropy of the OWA weights for a given level of orness is utilized. Using the method of Lagrange multipliers.Li [1999] solved the constrained optimization problem of OWA operators having maximal entropy analytically and derived a polynomial equation which is then solved to determine the optimal weighting vector. Also MAGDM problem is investigated in which all the information provided by the decision-makers is presented as interval valued intuitionistic fuzzy decision matrices where each of its elements is characterised by interval valued intuitionistic fuzzy number (IVIFN).

Park et al. [2009] proposed an ordered weighted geometric (OWG) model to aggregate all individual interval valued intuitionistic fuzzy decision matrices provided by the decision makers into the collective interval valued intuitionistic fuzzy decision matrix. In the proposed model, from the maximal entropy attribute weight information, an optimization model is established to determine the unknown weights. Then
the obtained attribute weights and the operators are used to fuse the interval valued intuitionistic fuzzy information in the collective interval valued intuitionistic fuzzy decision matrix to get the overall Interval Valued Intuitionistic Fuzzy values of the alternatives. A MAGDM model based on the maximal entropy weights [Li, 1999] is presented for computing the attributes weights, and a numerical illustration is given.

Some definitions are given first;

Definition 1.1: An OWA operator of dimension n is a mapping F: R^n → R that has an associated weighting vector W = (w_1, w_2, ..., w_n) such that F(a_1, a_2, ..., a_n) = \sum_{i=1}^{n} w_i b_i where b_i is the j^th largest element of the collection of the aggregated objects \{a_1, a_2, ..., a_n\}. Yager [1988] introduced two characterizing measures associated with the weighting vector W of an OWA operator.

Definition 1.2: The first one, the measure of orness of the aggregation, is defined as: Orness (W) = (1 / (n-1)) \sum_{i=1}^{n} (n - i) w_i and it characterizes the degree to which the aggregation is like an or operation. It is clear that orness(W)\in [0,1] holds for any weighting vector.

Definition 1.3: The second one, the measure of dispersion of the aggregation, is defined as disp (W) = (-) \sum_{i=1}^{n} w_i (log_2 w_i). This is called the Shannon entropy. In the literature there have been described several classes of entropies each including the Shannon entropy as a special case. They include:

Definition 1.4: The classical measure of uncertainty has been dominating the literature of information theory since its appearance. It is the same as the measure of dispersion up to a positive constant multiplier, and then H_s(W) = (-) \sum_{i=1}^{n} w_i (log_2 w_i). This is called the Shannon entropy. In the literature there have been described several classes of entropies each including the Shannon entropy as a special case. They include:

Definition 1.5: Entropy of degree \alpha): H_\alpha (also called entropies of degree \alpha) is defined as follows: H_\alpha (W) = (1 / (1- \alpha)) \log_2 (\sum_{i=1}^{n} w_i^\alpha) for all real numbers \alpha \neq 1

Definition 1.6: Entropy of order \beta): Then H_\beta is introduced in the following form H_\beta (W) = \frac{1}{2^1-\beta} (\sum_{i=1}^{n} w_i^\beta - 1) for all \beta \neq 1.

Definition 1.7: Entropy of R-norm): H_R defined by the following formula: H_R (W) = (R / (R-1)) (1- (\sum_{i=1}^{n} w_i^R)^{1/R}) for all R \neq 1. It is well known that H_R (W) = \lim_{\alpha \rightarrow 1} H_\alpha (w) = \lim_{\beta \rightarrow 1} H_\beta (w) = \lim_{R \rightarrow R} H_R (w). Hence it is clear that the actual type of aggregation performed by an OWA operator depends upon the form of the weighting vector. In this paper, using the method of the \alpha-entropy (with parameter value 2), \beta-entropy (when parameter \beta is 2) and the 2-norm entropy (from entropy class R-norm entropies), weights are determined for the aggregation process in MAGDM problems.

Section 2: Maximal-entropy, \beta-entropy and R-norm - entropies weights:

Introduction 2.1: In this section the maximal \alpha-entropy and R-norm entropy weights are derived when their parameter values equal to 2.

H_\alpha (W) = (-) \log_2 (\sum_{i=1}^{n} w_i^\alpha) if \alpha = 2;

H_\beta (W) = (-2) (\sum_{i=1}^{n} w_i^\beta - 1) if \beta = 2; and

H_R (W) = (-2) (1 - (\sum_{i=1}^{n} w_i^R)^{1/R}) if R = 2.

Problem 2.2: Therefore determining a special class of OWA operators having maximal entropy of the OWA weights for a given level of orness is based on the solution of the following mathematical programming problem

\text{Minimize} \sum_{i=1}^{n} w_i^2
subject to \((1 / (n-1)) \sum_{i=1}^{n}(n - i)w_i = \alpha, \ 0 \leq \alpha \leq 1;\)
\[w_1 + w_2 + \ldots + w_n = 1;\]
\[0 \leq w_i \leq 1 \text{ for all } i \text{ varying from } 1 \text{ to } n \ldots (1).\]

The solution is based on the use of the method Kuhn-Tucker multipliers and is rather complicated; hence we only refer to it. Notice that the objective function of this problem is strictly convex, which implies the unicity of the optimal solution. Solving this problem it could be found that the optimal solution is a window-type OWA operator. Thus there exists \(1 \leq k \leq n\) such that \(k \leq i \leq 1 \Leftrightarrow w_i \neq 0.\)

Without loss of generality we can assume that \(n \geq 3\) and \(0 < \alpha \leq \frac{1}{2}.\)

If \(\alpha = 1 / 2,\) then \(w_1 = \ldots = w_n = 1 / n\) is the optimal solution to (1). Furthermore this is the global optimal solution of all OWA operators of dimension \(n.\) To obtain the optimal solution for arbitrary \(\alpha\) in \((0, 1/2).\)

Consider the following disjoint union of intervals of \((0, 1/2),\)
\[(0, 1/2) = \bigcup_{j=1}^{n-1} I_j \text{ where } I_j = \left(\frac{j-1}{3(n-1)}, \frac{j}{3(n-1)} \right), \ j \text{ varies from } 1 \text{ to } (n-2)\]
\[I_{n-1} = \left(\frac{n-2}{3(n-2)}, \frac{1}{2} \right).\]

Now, considering \(\alpha,\) there uniquely exists \(1 \leq p \leq (n-1)\) such that \(\alpha\) is in \(I_p.\)

Let \(r = (n-p).\) Then the optimal solution to (1) can be obtained as:
\[w_i^* = 0, 1 \leq i < r;\]
\[w_i^* = \frac{6(n-1)\alpha - 2(n-\alpha - 1)}{(n-r+1)(n-r+2)} \ldots (2); \ W_n^* = \frac{2(n-2\alpha + 1)-6(n-1)\alpha}{(n-r+1)(n-r+2)} \ldots (3).\]
\[w_i^* = \frac{(n-i)}{(n-r)} w_r^* + \frac{(i-r)}{(n-r)} w_n^* \quad r < i < n. \quad \ldots (4).\]

Example 2.3: Let us suppose that \(n=5\) and \(\alpha = 0.4,\) then obtaining the maximal Shannon entropy weights we have to solve
\[w_1 [4(0.6) + 1 - 5w_1]^5 = (4(0.6))^4 [4(0.6) - 5w_1 + 1]\]
It finds that
\[w_1^* = 0.1278; \ w_5^* = \frac{(4(0.4) - 5)w_1^* + 1}{(4(0.4) + 1 - 5)w_1^*} = 0.2884\]
\[w_2^* = \sqrt[4]{(w_1^*)^3 w_5^*} = 0.1566; \ w_3^* = \sqrt[4]{(w_1^*)^2 (w_5^*)^2} = 0.1920.\]
\[w_4^* = \sqrt[4]{w_1^* (w_5^*)^3} = 0.2353 \text{ and } \text{disp} (W^*) = 1.5692.\]

Obtaining the maximsalentropy weights of \(\alpha\)-entropy, \(\beta\)-entropy and \(R\)-norm, it could be found that
\((0, 1/2) = \bigcup_{j=1}^{4} I_j \text{ where } I_j = \left[\frac{j-1}{12}, \frac{j}{12} \right], j=1,2,3 \text{ and } I_4 = \{ 1/4, 1/2 \}.

Since \(\alpha\) is in \(I_4\), then \(r = 1.\)
\[w_1^* = [24 (0.4) - 6] \div 30 = 0.1200; \ w_5^* = [18 - 24 (0.4)] \div 30 = 0.2800;\]
\[w_2^* = (3/4) w_1^* + (1/4) w_5^* = 0.1600; \ w_3^* = (1/2) w_1^* + (1/2) w_5^* = 0.2000;\]
Section 3 - Algorithm for MAGDM problem:

Definition 3.1: A neutrosophic fuzzy set A on the universe of discourse X characterized by a truth membership function $T_A(x)$, an indeterminacy function $I_A(x)$ and a falsity membership function $F_A(x)$ is defined as $A = \{< x, T_A(x), I_A(x), F_A(x) > : x \in X \}$, where $T_A, I_A, F_A : X \rightarrow [0, 1]$ and $0 \leq T_A(x) \leq 1; 0 \leq I_A(x) \leq 1; 0 \leq F_A(x) \leq 1$, for all $x \in X$.

Procedures of steps for an algorithm V using HIFOWA operator 3.2:

Step 1: Utilize the NFOWA operator to aggregate all individual neutrosophic fuzzy decision matrices $R^{(k)} = < (T_{ij}^{(k)}, I_{ij}^{(k)}, F_{ij}^{(k)}) > = (\tau_j^{(k)})$ (k varies from 1, 2, 3, and 4) into a collective neutrosophic fuzzy decision matrix $R^{*} = (r_{ij})_{mn}$.

Step 2: Derive the weights by the entropy weights of α-entropy, β-entropy and R-norm by using $w_{r}^* = \frac{6(n-1)\alpha-2(n-r-1)}{(n-r+1)(n-r+2)}$; $w_{n}^* = \frac{2(2n-2r+1)-6(n-1)\alpha}{(n-r+1)(n-r+2)}$.

$$w_{i}^* = \frac{(n-i)}{(n-r)} w_{r}^* + \frac{(r-i)}{(n-r)} w_{n}^* ; r \leq i < n;$$

Step 3: Use the NFHA operator to get the overall values r_j of the alternatives $O_j (j=1, 2, ... , n)$.

Step 4 Using $r^* = (1,0,0) = (T_A^*, I_A^*, F_A^*)$, find $d(r^*, r_j) = \sqrt{(T_A^* - T_{jA})^2 + (I_A^* - I_{jA})^2 + (F_A^* - F_{jA})^2}$ to calculate the distances between informational neutrosophic values $r_j = (T_jA, I_jA, F_jA) = (T_{jA}, I_{jA}, F_{jA})$ ($j = 1, 2, ..., n$).

Step 5: Rank the alternatives based on distances.

Step 6: Select the best alternative.

Example 3.3: Steps for the given problem.

STEP 1: To derive a weight vector w by using entropy weights of α-entropy, β-entropy, and R-norm

$$w_i^* = 0, 1 \leq i < r; w_r^* = \frac{6(n-1)\alpha-2(n-r-1)}{(n-r+1)(n-r+2)}; w_n^* = \frac{2(2n-2r+1)-6(n-1)\alpha}{(n-r+1)(n-r+2)}$$

$$r < i < n.$$

Assumption: $n = 5; r = 1; \alpha = 0.4$;

$$w_1^* = \frac{6(5-1)(0.4)}{(5-1)(5+1)} = 0.12; \hspace{1cm} w_5^* = \frac{2(2*5)-(2*1)+1-6(5-1)(0.4)}{(5-1)(5+1)} = 0.28.$$

$$w_2^* = \frac{(5-2)}{(5-1)} w_1^* + \frac{(2-1)}{(5-1)} w_5^* = (3/4)(0.12) + (1/4)(0.28) = 0.16.$$

$$w_3^* = \frac{(5-3)}{(5-1)} w_1^* + \frac{(3-1)}{(5-1)} w_5^* = (2/4)(0.12) + (2/4)(0.28) = 0.20.$$

$$w_4^* = \frac{(5-4)}{(5-1)} w_1^* + \frac{(4-1)}{(5-1)} w_5^* = (1/4)(0.12) + (3/4)(0.28) = 0.24.$$
Hence \(w_1^* = 0.12; \ w_2^* = 0.16; \ w_3^* = 0.20; \ w_4^* = 0.24; \ w_5^* = 0.28; \)

Step 2: Assume that the information in decision making are in neutrosophic fuzzy matrices as follows:

\[
R^1 = \begin{bmatrix}
< 0.25,0.54,0.8 > & < 0.3,0.4,0.9 > & < 0.7,0.35,0.5 > & < 0.9,0.2,0.8 > \\
< 0.6,0.5,0.5 > & < 0.6,0.2,0.3 > & < 0.2,0.4,0.9 > & < 0.6,0.23,0.7 > \\
< 0.3,0.45,0.9 > & < 0.7,0.1,0.4 > & < 0.6,0.5,0.5 > & < 0.4,0.2,0.9 > \\
< 0.45,0.38,0.27 > & < 0.37,0.68,0.16 > & < 0.6,0.25,0.3 > & < 0.1,0.4,0.8 > \\
\end{bmatrix}
\]

\[
R^2 = \begin{bmatrix}
< 0.1,0.3,0.7 > & < 0.6,0.6,0.5 > & < 0.4,0.2,0.1 > & < 0.3,0.7,0.6 > \\
< 0.3,0.55,0.37 > & < 0.75,0.42,0.1 > & < 0.32,0.67,0.56 > & < 0.35,0.56,0.72 > \\
< 0.5,0.4,0.32 > & < 0.65,0.25,0.32 > & < 0.6,0.3,0.1 > & < 0.75,0.25,0.55 > \\
< 0.27,0.9,0.81 > & < 0.31,0.4,0.6 > & < 0.75,0.65,0.55 > & < 0.3,0.7,0.9 > \\
\end{bmatrix}
\]

\[
R^3 = \begin{bmatrix}
< 0.32,0.47,0.6 > & < 0.9,0.1,0.3 > & < 0.6,0.4,0.5 > & < 0.3,0.5,0.7 > \\
< 0.12,0.32,0.52 > & < 0.17,0.81,0.9 > & < 0.5,0.3,0.1 > & < 0.45,0.65,0.27 > \\
< 0.5,0.6,0.23 > & < 0.56,0.52,0.23 > & < 0.3,0.6,0.1 > & < 0.57,0.52,0.55 > \\
< 0.54,0.83,0.72 > & < 0.73,0.86,0.61 > & < 0.5,0.52,0.4 > & < 0.6,0.4,0.2 > \\
\end{bmatrix}
\]

\[
R^4 = \begin{bmatrix}
< 0.7,0.3,0.1 > & < 0.5,0.4,0.4 > & < 0.2,0.1,0.6 > & < 0.7,0.9,0.6 > \\
< 0.3,0.56,0.73 > & < 0.57,0.24,0.1 > & < 0.23,0.76,0.65 > & < 0.53,0.65,0.27 > \\
< 0.32,0.32,0.6 > & < 0.56,0.52,0.32 > & < 0.1,0.3,0.9 > & < 0.57,0.52,0.55 > \\
< 0.72,0.5,0.18 > & < 0.13,0.6,0.4 > & < 0.55,0.56,0.78 > & < 0.7,0.1,0.6 > \\
\end{bmatrix}
\]

\[
R^5 = \begin{bmatrix}
< 0.52,0.45,0.1 > & < 0.57,0.37,0.1 > & < 0.76,0.65,0.23 > & < 0.57,0.52,0.55 > \\
< 0.3,0.6,0.7 > & < 0.7,0.4,0.1 > & < 0.3,0.7,0.6 > & < 0.5,0.4,0.6 > \\
< 0.2,0.3,0.2 > & < 0.6,0.2,0.5 > & < 0.1,0.6,0.65 > & < 0.3,0.9,0.7 > \\
< 0.27,0.5,0.81 > & < 0.75,0.25,0.32 > & < 0.32,0.67,0.56 > & < 0.35,0.56,0.72 > \\
\end{bmatrix}
\]

Step 3: Using the weights \(w_1^* = 0.12; \ w_2^* = 0.16; \ w_3^* = 0.20; \ w_4^* = 0.24; \ w_5^* = 0.28; \) the above fuzzy neutrosophic matrices are converted into a single matrix is as follows:

Step 4: Using the weights \(w = \{0.2717, 0.2608, 0.2254, 0.2421\} \) obtained from Poisson distribution.

New reduced row matrix \(R' \) is \[(0.4115, 0.5054, 0.5805), (0.6048, 0.4811, 0.4611), (0.4538, 0.4676, 0.5207), (0.5332, 0.5570, 0.6153) \]

Step 5: \(d = \sqrt{\frac{1}{2} \sum [(1 - T)^2 + (0 - I)^2 + (0 - F)^2]} \)

\(d(r , r_1) = 0.6851 = A_1; \) \(d(r , r_2) = 0.5478 = A_2. \)

\(d(r , r_3) = 0.6455 = A_3; \) \(d(r , r_4) = 0.6737 = A_4.. \)

Step 6: \(A_1 > A_4 > A_3 > A_2. \)

Step 7: \(A_1 \) is best alternative

REFERENCES:

