Further properties on strongly generalized star semi-continuous mappings

A.I. EL-Maghrabi¹ and S.S. AL-Ahmadi²

¹Department of Mathematics, Faculty of Science, Taibah University, AL-Madinah AL-Munawarh, P.O. Box, 344, AL-Madinah, K.S.A.
E-mail: amaghrabi@taibahu.edu.sa, alahmadi1428@hotmail.com.
²Department of Mathematics, Faculty of Science, Kafr EL-Sheikh University Kafr EL-Sheikh, EGYPT.
E-mail: aelmaghrabi@yahoo.com

Abstract: The aim of this paper is to introduce and study the class of strongly generalized star semi-closed sets which is weaker than semi-closed sets (Crossly and Hildebrand, 1971) and stronger than both strongly generalized semi-closed sets (El-Maghrabi and Nasef, 2008) and semi generalized-closed sets (Bhattacharya and Lahiri, 1987). Also, through this paper some concepts such as: strongly generalized star semi-continuous, strongly generalized star semi-closed and strongly generalized star semi-homeomorphism maps are discussed and investigated via a strongly generalized star semi-closed set.

(1991) AMS Math. Subject Classification: 54 A05; 54 D10

Keywords and Phrases: strongly generalized star semi-closed sets, strongly generalized star semi-continuous, strongly generalized star semi-irresolute, strongly generalized star semi-closed and strongly generalized star semi-homeomorphism mappings.

INTRODUCTION

In 1970, Levine [15] introduced the concept of generalized closed (briefly, g-closed) sets of a topological space. Bhattacharya and Lahiri [4] defined and studied the notion of sg-closed sets. In 1990, Arya and Nour [2] introduced the concept of gs-closed sets. Veera Kumar [21] defined and studied the notion of g^*-closed sets. The notion of g^*-closed sets was defined by El-Maghrabi and Nasef [12]. The purpose of the present paper is to define and investigate the concept of strongly generalized star semi-closed sets. Some notions are introduced and investigated via a strongly generalized star semi-closed set such as: strongly generalized star semi-continuity, strongly generalized star semi-irresoluteness, strongly generalized star semi-closed and strongly generalized star semi-homeomorphism maps.

PRELIMINARIES

Throughout this paper, spaces always mean topological spaces on which no separation axiom is assumed unless explicitly stated. Let X be a space and A be a subset of X. The closure of A and the interior of A are denoted by $\text{cl}(A)$ and $\text{int}(A)$ respectively. A subset A of X is said to be regular-open [19] (resp. semi-open [14], pre-open [17], Q-set [13]) if $\text{int}(\text{cl}(A)) \subseteq A$ (resp. $A \subseteq \text{cl}(\text{int}(A))$, $\text{int}(\text{cl}(A)) \subseteq \text{cl}(\text{int}(A))$). A subset A of X is said to be semi-open or, equivalently, if $\text{int}(\text{cl}(A)) \subseteq A$ [8]. The family of all semi-open (resp. semi-closed) sets will be denoted by $S_{0}(X,\tau)$ (resp. $S_{c}(X,\tau)$). The intersection (resp. the union) of all semi-closed (resp. semi-open) sets containing (resp. contained in) A is called the semi-closure (resp. the semi-interior) of A and will be denoted by $S\cap A$ (resp. $S\cap A$).

Definition 2.1. A subset of a space (X,τ) is called:

1- a generalized closed (briefly, g-closed) [15] set if $\text{cl}(A) \subseteq U$ whenever $A \subseteq U$ and U is open,
2- a semi generalized-closed (briefly, sg-closed) [4] set if $S\cap A \subseteq U$ whenever $A \subseteq U$ and U is semi-open,
3- a generalized semi-closed (briefly, gs-closed)[2] set if $S\cap A \subseteq U$ whenever $A \subseteq U$ and U is open,
4- a strongly generalized semi-closed (briefly, g^*-closed) [12] set if $S\cap A \subseteq U$ whenever $A \subseteq U$ and U is g-open,
5- a g^*-closed [21] set if $cI(A) \subseteq U$ whenever $A \subseteq U$ and U is g-open.

Remark 2.1. The complement of g-closed (resp. sg-closed, gs-closed, g^*s-closed, g^*-closed) is called g-open (resp. sg-open, gs-open, g^*s -open, g^* -open).

Definition 2.2. A mapping $f: (X, \tau) \rightarrow (Y, \sigma)$ is called g-continuous [3] (resp. sg-continuous [20], gs-continuous [11], g^*-continuous [21]) if $f^{-1}(V)$ is g-closed (resp. sg-closed, gs-closed, g^* -closed) in (X, τ) for every closed set V of (Y, σ).

Definition 2.3. A mapping $f: (X, \tau) \rightarrow (Y, \sigma)$ is said to be:

(i) g-closed [16] (resp. sg-closed [11], gs-closed [11]) if $f(V)$ is g-closed (resp. sg-closed, gs-closed) in (Y, σ) for every closed set V of (X, τ).

(ii) g-open [16] (resp. sg-open [11], gs-open [11]) if $f(V)$ is g-open (resp. sg-open, gs-open) in (Y, σ) for every open set V of (X, τ).

Definition 2.4. A bijective mapping $f: (X, \tau) \rightarrow (Y, \sigma)$ is said to be:

(i) semi-homeomorphism (B) [5] if f is semi-continuous and semi-open,

(ii) semi-generalized-homeomorphism [10] (briefly, sg-homeomorphism), if f is sg-continuous and sg-open,

(iii) generalized semi-homeomorphism [10] (briefly, gs-homeomorphism), if f is gs-continuous and gs-open.

Lemma 2.1 [7,8,9]. If A and B are two subsets of X, then the following statements are hold:

(i) $s-cl(A)$ (resp. $s-int(A)$) is semi- closed (resp. semi-open),

(ii) A is semi- closed (resp. semi-open) iff $s-cl(A)$ (resp. $s-int(A)$),

(iii) $s-cl(X-A) = X - s-int(A)$ and $s-int(X-A) = X - s-cl(A)$,

(iv) $A \subseteq s-cl(A) \cup s-int(A)$,

(v) $s-cl(s-cl(A)) = s-cl(A)$.

Corollary 2.1 [1]. Let A be a subset of a space (X, τ). Then $s-cl(A) \cup s-int(cl(A))$.

3. More on strongly g^*s-closed sets.

Definition 3.1 A subset A of a space X is called a strongly generalized star semi-closed (briefly, strongly g^*s-closed) set, if $U(A)cl \subseteq U$ whenever $UA \subseteq U$ and U is gs-open in (X, τ).

A subset B of a space (X, τ) is called a strongly generalized star semi-open (briefly, strongly g^*s-open) set, if $X-B$ is strongly generalized star semi-closed in (X, τ).

Remark 3.1. The concepts of g-closed (resp. g^*-closed) and strongly g^*s-closed sets are independent.

Example 3.1. If $X=\{a,b,c,d\}$ with two topologies τ_1, τ_2 on X such that: $\tau_1=\{X, \varnothing, \{a\}, \{a,b\}\}, \tau_2=\{X, \varnothing, \{a\}, \{b,c\}, \{a,b,c\}\}$, then:

(1) a subset $A=\{b\}$ of X on τ_1 is strongly g^*s-closed but not g-closed and a subset $B=\{a,b,d\}$ of X on τ_1 is g-closed but not strongly g^*s-closed.

(2) a subset $C=\{a\}$ of X on τ_2 is strongly g^*s-closed but not g^*-closed and a subset $D=\{b,d\}$ of X on τ_2 is g^*-closed but not strongly g^*s-closed.

Remark 3.2. By Definition 3.1 and Remark 3.1, we obtain the following diagram.
However, the converses are not true in [2, 9, 12, 21] and by the following examples.

Example 3.2. If $X = \{a, b, c, d\}$ with topologies $\tau_1,$ τ_2 on X such that:

$\tau_1 = \{X, \emptyset, \{c,d\}\},$ $\tau_2 = \{X, \emptyset, \{c\}, \{c,b\}, \{b,c,d\}\},$ then a subset $A = \{a, b, c\}$ of X on τ_1 is strongly g^s-closed but not semi-closed. While, a subset $B = \{a, c\}$ of X on τ_2 is g^s-closed but not strongly g^s-closed.

Example 3.3. Let $X = \{a, b, c\}$ with topologies τ_1, τ_2 on X such that:

$\tau_1 = \{X, \emptyset, \{a,b\}, \{c\}\},$ $\tau_2 = \{X, \emptyset, \{a\}, \{a,b\}\}.$ Then, a subset $C = \{a\}$ of X on τ_1 is sg-closed but not strongly g^s-closed. But a subset $D = \{a, c\}$ of X on τ_2 is g^s-closed but not strongly g^s-closed.

Remark 3.3. The union of two strongly g^s-closed sets need not be strongly g^s-closed. Let $X = \{a, b, c, d\}$ with topology $\tau = \{X, \emptyset, \{a\}, \{b\}, \{a,b\}\}.$ Then, the subsets $A = \{a\}$ and $B = \{b\}$ are strongly g^s-closed but their union is not strongly g^s-closed.

Theorem 3.1. A subset A of a space (X, τ) is strongly g^s-closed if and only if every g-open set G containing A, there exists a semi-closed set F such that $G \subseteq A \subseteq F \subseteq G.$

Proof. Necessity. Let A be a strongly g^s-closed set, $A \subseteq G$ and G be g-open. Then $s - \text{cl}(A) \subseteq G.$ Set, $s - \text{cl}(A) = F.$ Hence, there exists a semi-closed set F such that $A \subseteq F \subseteq G.$

Sufficiency. Assume that $A \subseteq G$ and G is a g-open set of $X.$ Then by hypothesis, there exists a semi-closed set F such that $A \subseteq F \subseteq G,$ therefore, $s - \text{cl}(A) \subseteq G.$ So, A is strongly g^s-closed.

Theorem 3.2. Let A be a strongly g^s-closed set of $X.$ Then $(s - \text{cl}(A)) - A$ does not contain any non empty g-closed set.

Proof. Let F be a g-closed set such that $F \subseteq (s - \text{cl}(A)) - A.$ Then $F \subseteq X - A$ this implies that $A \subseteq X - F.$ Since, A is strongly g^s-closed and $X - F$ is g-open, then $s - \text{cl}(A) \subseteq X - F,$ that is $F \subseteq X - (s - \text{cl}(A)),$ hence $F \subseteq s - \text{cl}(A) \cap (X - (s - \text{cl}(A))) \emptyset.$ This shows that $F \emptyset.$

The converse of the above theorem may not be true as is shown by the following example.

Example 3.4. In Example 3.1, if $A = \{a, b, d\}$ is a subset of X on a topology τ_2, then $(s - \text{cl}(A)) - A \emptyset \{c\}$ does not contain any non empty g-closed set.

Corollary 3.1. Let A be a strongly g^s-closed set of $X.$ Then $(s - \text{cl}(A)) - A$ does not contain any non empty gs-closed set.

Proof. Obvious.

Corollary 3.2. Let A be a strongly g^s-closed set. Then A is semi-closed if and only if $(s - \text{cl}(A)) - A$ is gs-closed.

Proof. Necessity. Assume that A is strongly g^s-closed and semi-closed sets. Then $s - \text{cl}(A)$ A and hence $(s - \text{cl}(A)) - A \emptyset$ which is gs-closed.

Sufficiency. Suppose that $s - \text{cl}(A) - A$ is gs-closed and A is strongly g^s-closed. Then by Corollary 3.1, $s - \text{cl}(A) - A$ does not contain any non empty gs-closed subset of $X.$ Hence A is semi-closed.

Theorem 3.3. For each $x \in X,$ then $\{x\}$ is gs-closed or its complement $X - \{x\}$ is strongly g^s-closed.
Proof. Suppose that \(\{x\} \) is not gs- closed. Then its complement is not gs- open. Since, \(X \) is the only gs- open set containing \(X-\{x\} \), that is, \(s-scl(X-\{x\}) \subseteq X \) holds. This implies that \(X-\{x\} \) is strongly g*s- closed.

Proposition 3.1. If \(A \) is a strongly g*s -closed set and \(A \subseteq B \subseteq s-scl(A) \), then \(B \) is strongly g*s- closed.

Proof. Let \(B \subseteq U \) and \(U \) be a gs- open set of \(X \). Then \(A \subseteq U \). Since \(A \) is strongly g*s - closed, hence \(s-scl(A) \subseteq U \), but \(B \subseteq s-scl(A) \). Then \(s-scl(B) \subseteq U \). Hence, \(B \) is strongly g*s- closed.

Proposition 3.2. If \((X, \tau) \) is a topology space and \(A \subseteq X \), then \(A \) is semi – closed, if one of the following two cases hold:

1. If \(A \) is strongly g*s-closed and gs-open.
2. If \(A \) is strongly g*s-closed and open.

Theorem 3.4. Let \(A \) be a subset of a space \(X \), the following are equivalent:

(i) \(A \) is regular – open,
(ii) \(A \) is open and strongly g*s-closed.

Proof. (i) \(\Rightarrow \) (ii). Let \(U \) be a gs-open set containing \(A \) and \(A \) be a regular-open set. Then, \(A \cup int(cl(A)) \subseteq U \). So, \(s-cl(A) \subseteq U \) and therefore \(A \) is strongly g*s-closed.

(ii) \(\Rightarrow \) (i). Hence by Theorem 3.4, \(A \) is regular-open. Since, every regular-open set is open, then \(A \) is a Q-set, hence \(A \) is closed. Therefore, \(A \) is clopen.

Theorem 3.5. If \(A \) is a subset of a space \(X \), the following are equivalent:

(i) \(A \) is clopen,
(ii) \(A \) is open, a Q-set and strongly g*s-closed.

Proof. (i) \(\Rightarrow \) (ii). Since \(A \) is clopen, hence \(A \) is both open and a Q-set. Let \(U \) be a gs-open set containing \(A \). Then, \(A \cup int(cl(A)) \subseteq U \) and so \(s-cl(A) \subseteq U \). Hence, \(A \) is strongly g*s-closed.

(ii) \(\Rightarrow \) (i). Hence by Theorem 3.4, \(A \) is regular-open. Since, every regular-open set is open, then \(A \) is a Q-set, hence \(A \) is closed. Therefore, \(A \) is clopen.

Theorem 3.6. For a subset \(A \) of a space \(X \), the following statements are equivalent:

(i) \(A \) is strongly g*s - open,
(ii) For each gs-closed set \(F \subseteq X \) contained in \(A \), \(F \subseteq s-int(A) \),
(iii) For each gs-closed set \(F \subseteq X \) contained in \(A \), there exists a semi-open set \(G \subseteq X \) such that \(F \subseteq G \subseteq A \).

Proof. (i) \(\Rightarrow \) (ii). Let \(F \subseteq A \) and \(F \) be a gs- closed set. Then \(X-A \subseteq X-F \) which is gs-open. Hence, \(s-cl(X-A) \subseteq X-F \). Therefore by Lemma 2.1, (iii), \(F \subseteq s-int(A) \).

(ii) \(\Rightarrow \) (iii). Let \(F \subseteq A \) and \(F \) be a gs-closed set. Then by hypothesis, \(F \subseteq s-int(A) \). Set \(s-int(A) \subseteq G \), hence \(F \subseteq G \subseteq A \).

(iii) \(\Rightarrow \) (i). Let \(X-A \subseteq U \) and \(U \) be a gs-open set. Then \(X-U \subseteq A \) and by hypothesis, there exists a semi-open set \(G \) such that \(X-U \subseteq G \subseteq A \), that is, \(X-A \subseteq X-G \subseteq U \). Therefore, by Theorem 3.1, \(X-A \) is strongly g*s- closed. Hence, \(A \) is strongly g*s-open.

Lemma 3.1. Let \(A \subseteq X \) be a strongly g*s -closed set. Then \(s-cl(A)-A \) is strongly g*s - open.

Proof. Let \(F \) be a gs- closed set such that \(F \subseteq (s-cl(A))-A \). Since \(A \) is strongly g*s-closed, then by Corollary 3.1, \(F \not\subseteq \emptyset \). Therefore, \(\emptyset \subseteq s-int(s-cl(A)-A) \). Hence, by Theorem 3.6, \(s-cl(A)-A \) is strongly g*s- open.

4. **Strongly g*s-continuous mappings.**

Definition 4.1. A mapping \(f : (X, \tau) \rightarrow (Y, \sigma) \) is called a strongly generalized star semi-continuous (briefly, strongly g*s-continuous) mapping if the inverse image of each closed set in \(Y \) is strongly g*s-closed in \(X \).

Definition 4.2. A mapping \(f : (X, \tau) \rightarrow (Y, \sigma) \) is called strongly generalized star semi-irresolute (briefly, strongly g*s- irresolute) if, \(f^{-1}(U) \) is strongly g*s-closed in \((X, \tau)\), for every strongly g*s-closed set \(U \) of \((Y, \sigma)\).

Lemma 4.1. (1) Every semi- continuous mapping is strongly g*s-continuous.
Every strongly g^*s-continuous mapping is sg-continuous (resp. gs-continuous).

Remark 4.1. The concept of strongly g^*s-continuous and g-continuous (resp. g^s-continuous) mappings are independent, as is shown by the following examples.

Example 4.1. Let $X = \{a,b,c,d\}$, $Y = \{a,b,c\}$ with two topologies $\tau_X = \{X, \varphi, \{a\}\}$, $\tau_Y = \{Y, \varphi, \{a\}\}$ and a mapping $f : (X, \tau_X) \rightarrow (Y, \tau_Y)$ is defined by $f(a) = b$, $f(b) = c$ and $f(c) = f(d) = a$, then f is g-continuous but not strongly g^*s-continuous.

Example 4.2. If $X = \{a,b,c\}$ with topologies.

(i) $\tau_X = \{X, \varphi, \{a\}, \{b\}, \{a,b\}\}$, $\tau_Y = \{Y, \varphi, \{a\}, \{b,c\}\}$, then a mapping $f : (X, \tau_X) \rightarrow (Y, \tau_Y)$ which is defined by $f(a) = b$, $f(b) = a$ and $f(c) = c$ is strongly g^*s-continuous but not g^*-continuous.

(ii) $\tau_X = \{X, \varphi, \{b\}, \{a,c\}\}$, $\tau_Y = \{Y, \varphi, \{b,c\}\}$, then a mapping $f : (X, \tau_X) \rightarrow (Y, \tau_Y)$ which is defined by $f(a) = f(b) = a$ and $f(c) = b$ is g^*-continuous but not strongly g^*s-continuous.

Remark 4.2. By Lemma 4.1 and Remark 4.1, we have the following diagram.

```
continuity  \downarrow\  g^* - continuity \downarrow\  g^s - continuity \downarrow\  gs - continuity
semi-continuity  \downarrow\  strongly g^s - continuity  \downarrow\  sg - continuity
```

The converses of this implication is not true in [6,11,14,21] and by the following examples.

Example 4.3. Let $X = \{a,b,c\}$, $Y = \{a,b,c\}$, and a mapping $f : (X, \tau_X) \rightarrow (Y, \tau_Y)$ be defined by $f(a) = f(c) = a$ and $f(b) = b$. Then f is strongly g^*s-continuous but not semi-continuous.

Example 4.4. If $X = \{a,b,c\}$, $\tau_X = \{X, \varphi, \{a,b\}, \{b,c\}\}$, and a mapping $f : (X, \tau_X) \rightarrow (X, \tau_X)$ is defined as $f(a) = a$, $f(b) = c$ and $f(c) = b$, hence f is gs-continuous and sg-continuous but not strongly g^*s-continuous.

Theorem 4.1. A mapping $f : (X, \tau) \rightarrow (Y, \sigma)$ is strongly g^*s-continuous iff the inverse image of each open set in Y is strongly g^*s-open in X.

Proof. The necessity. Let $G \subseteq Y$ be an open set. Then, $Y - G$ is closed, hence, by hypothesis, $f^{-1}(Y - G)$ is a strongly g^*s-closed set. Therefore, $f^{-1}(G)$ is strongly g^*s-open.

The sufficiency. Let $F \subseteq Y$ be a closed set. Then, $Y - F$ is open, hence by hypothesis, $f^{-1}(Y - F)$ is a strongly g^*s-open set. Thus $f^{-1}(F)$ is strongly g^*s-closed. So, f is strongly g^*s-continuous.

Lemma 4.2. Every strongly g^*s- irresolute mapping is strongly g^*s-continuous.

Example 4.5. Let $X = \{a,b,c\}$, $Y = \{a,b,c\}$, and a mapping $f : (X, \tau_X) \rightarrow (Y, \tau_Y)$ be defined by $f(a) = f(b) = a$ and $f(c) = c$. Then, f is strongly g^*s-continuous but not strongly g^*s- irresolute.

Remark 4.3. The composition of two strongly g^*s- continuous mappings may not be strongly g^*s- continuous the following example shows this fact.
Example 4.6. Let $X = \{a,b,c\}$ and $Y = \{a,b,c,d\}$ with the topologies $\tau_X = \{X, \emptyset, \{a\}\}$, $\tau_Y = \{Y, \emptyset, \{a,c\}\}$, $\tau_Z = \{Z, \emptyset, \{c\}\}$, a mapping f from (X, τ_X) to (Y, τ_Y) is the identity map and a mapping $g : (Y, \tau_Y) \rightarrow (Z, \tau_Z)$ is defined by $g(a) = a$, $g(b) = g(d) = b$ and $g(c) = c$. Then, f and g are strongly g-continuous, but $g \circ f$ is not strongly g^s-continuous.

In the next theorem, we give the necessarily condition which satisfying the composition of two strongly g^s-continuous mappings is also strongly g^s-continuous.

Theorem 4.2. Let $f : (X, \tau_X) \rightarrow (Y, \tau_Y)$ and $g : (Y, \tau_Y) \rightarrow (Z, \tau_Z)$ be two mappings. Then, $g \circ f : (X, \tau_X) \rightarrow (Z, \tau_Z)$ is strongly g^s-continuous if one of the following conditions are satisfied.

(i) f is strongly g^s-continuous and g is continuous.

(ii) f is semi-continuous and g is continuous.

(iii) f is strongly g^s-irresolute and g is strongly g^s-continuous.

Proof.

(i) Let $F \subseteq Z$ be a closed set and g be a continuous mapping. Then, $g^{-1}(F) \subseteq Y$ is closed. But, f is strongly g^s-continuous, then $f^{-1}(g^{-1}(F)) \subseteq X$ is strongly g^s-closed. Therefore, $(g \circ f)^{-1}(F)$ is strongly g^s-closed in X.

(ii) If V is a closed subset of Z, then $g^{-1}(V) \subseteq Y$ is closed. But, f is semi-continuous, then f is strongly g^s-continuous, hence $(g \circ f)^{-1}(V)$ is strongly g^s-closed in X.

(iii) Let V be a closed subset of Z and g is strongly g^s-continuous. Then, $g^{-1}(V) \subseteq Y$ is strongly g^s-closed. But, f is strongly g^s-irresolute, then $f^{-1}(g^{-1}(V)) \subseteq X$ is strongly g^s-closed. Hence, $g \circ f$ is strongly g^s-continuous.

5. Strongly g^s-closed mappings.

Definition 5.1. A mapping $f : (X, \tau) \rightarrow (Y, \sigma)$ is called strongly generalized star semi-closed (resp. strongly generalized star semi-open) (briefly, strongly g^s-closed and strongly g^s-open) if the image of each closed (resp. open) set of X is strongly g^s-closed (resp. strongly g^s-open) in Y.

Remark 5.1. The g-closed (resp. g-open) and strongly g^s-closed (resp. strongly g^s-open) mappings are independent. The following examples show this remark.

Example 5.1. Let $X = \{a,b,c,d\}$ and $\tau_X = \{X, \emptyset, \{a\}\}$, $\tau_Y = \{Y, \emptyset, \{a,c\}\}$, $\{a,b,c\}$ be two topologies on X, Y respectively. Then, the mapping $f : (X, \tau_X) \rightarrow (Y, \tau_Y)$ which is defined by $f(a) = c$, $f(b) = a$, $f(c) = b$ and $f(d) = d$ is g-closed (resp. g-open) but not strongly g^s-closed (resp. strongly g^s-open).

Example 5.2. Let $X = \{a,b,c,d\}$ with two topologies $\tau_X = \{X, \emptyset, \{b,c,d\}\}$ and $\tau_Y = \{Y, \emptyset, \{a\}\}$, $\{b,c\}$, $\{a,b,c\}$). Then, the identity mapping from (X, τ_X) into (Y, τ_Y) is strongly g^s-closed (resp. strongly g^s-open) but not g-closed (resp. g-open).

Remark 5.2. It is clear that a strongly g^s-closed (resp. strongly g^s-open) mapping is weaker than semi-closed (resp. semi-open) and stronger than each of sg-closed (resp. sg-open). The implications between these new types of mappings and other corresponding ones are given by the following diagram.

```
+---------------------------+                      +---------------------------+
| closed                   |                      | closed                   |
| (open)                   |                      | (g-open)                 |
|                           |                      |                           |
| semi-closed              |                        | strongly $g^s$-closed    |
| (semi-open)              |                        | (strongly $g^s$-open)    |
|                           |                        |                           |
| g-closed                 |                        | sg-closed                |
| (g-open)                 |                        | (sg-open)                |
|                           |                        |                           |
|                           | g-closed               |                           |
|                           | (g-open)               |                           |
|                           |                         |                           |
|                           |                          | sg-closed                |
|                           |                          | (sg-open)                |
```

The converses of these implications are not true in [11,16,18] and by the following examples.
Example 5.3. If \(X \), \(Y \) \{a, b, c, d\} and \(\tau_X \) \{X, \varphi, \{a\}, \{a, b\}\}, \(\tau_Y \) \{Y, \varphi, \{c, d\}\}, then a mapping \(f: (X, \tau_X) \to (Y, \tau_Y) \) which defined by \(f(a) = c \), \(f(b) = d \), \(f(c) = a \) and \(f(d) = b \) is strongly \(g^s \)-closed (resp. strongly \(g^s \)-open) but it is not semi-closed (resp. semi-open).

Example 5.4. If \(X \), \(Y \) \{a, b, c\} with two topologies \(\tau_X \) \{X, \varphi, \{a\}, \{a, b\}\} and \(\tau_Y \) \{Y, \varphi, \{a\}, \{b, c\}\}, then a mapping \(f: (X, \tau_X) \to (Y, \tau_Y) \) which is defined by \(f(a) = a \), \(f(b) = c \) and \(f(c) = b \) is gs-closed (resp. gs-open) and sg-closed (resp. sg-open) but not strongly gs-closed (resp. strongly gs-open).

Theorem 5.1. For a bijective mapping \(f: (X, \tau) \to (Y, \sigma) \), the following statements are equivalent:

(i) \(f \) is strongly \(g^s \)-closed,

(ii) \(f \) is strongly \(g^s \)-open,

(iii) \(f^{-1} \) is strongly \(g^s \)-continuous.

Proof. (i)\(\to \) (ii). Let \(G \subseteq X \) be an open set. Then, \(X - G \) is closed and by hypothesis, \(f(X - G) \) is strongly \(g^s \)-closed. Since, \(f \) is bijective, hence \(Y - f(G) \) is strongly \(g^s \)-closed. Therefore, \(f(G) \) is strongly \(g^s \)-open.

(ii)\(\to \) (iii). If \(G \subseteq X \) is an open set, then \(f(G) \) is strongly \(g^s \)-open in \(Y \). Since, \(f \) is bijective, hence \((f^{-1})^{-1}(G) \) is strongly \(g^s \)-closed in \(Y \). Therefore, \(f^{-1} \) is strongly \(g^s \)-continuous.

(iii)\(\to \) (i). Let \(F \subseteq X \) be a closed set. Then, \((f^{-1})^{-1}(F) \) is strongly \(g^s \)-closed in \(Y \). But, \(f \) is bijective, hence \(f(F) \) is strongly \(g^s \)-closed in \(Y \). So, \(f \) is strongly \(g^s \)-closed.

Theorem 5.2. A mapping \(f: (X, \tau) \to (Y, \sigma) \) is strongly \(g^s \)-open (resp. strongly \(g^s \)-closed) iff for any subset \(A \) in \((Y, \sigma) \) and any closed (resp. open) set \(F \) in \((X, \tau) \) containing \(f^{-1}(A) \), there exists a strongly \(g^s \)-closed (resp. strongly \(g^s \)-open) subset \(B \) of \((Y, \sigma) \) containing \(A \) such that \(f^{-1}(B) \subseteq F \).

Proof. The necessity. Let \(f: (X, \tau) \to (Y, \sigma) \) be a strongly \(g^s \)-open mapping and \(F \) be a closed set containing \(f^{-1}(A) \) where \(A \subseteq Y \). Then, \(f(X - F) \) is strongly \(g^s \)-open in \(Y \). Set, \(Y - f(X - F) \). Since, \(f^{-1}(A) \subseteq F \), hence \(X - F \subseteq X - f^{-1}(A) \). Therefore, \(f(X - F) \subseteq Y - A \). Then, \(A \subseteq Y - f(X - F) \). Where, \(Y - f(X - F) \), then \(f^{-1}(B) \subseteq Y - f(X - F) \). Hence, \(f^{-1}(B) \subseteq F \).

The sufficiency. Let \(U \) be an open set in \(X \). Then, \(X - U \) is closed such that \(f^{-1}(Y - f(U)) \subseteq X - U \). By hypothesis, there exists a strongly \(g^s \)-closed set \(B \) containing \(Y - f(U) \), that is, \(Y - f(U) \subseteq B \). Also, since, \(f^{-1}(B) \subseteq X - U \), then \(f(U) \subseteq f(X - f^{-1}(B)) \subseteq Y - B \). This implies that \(B \subseteq Y - f(U) \). Hence, from (1),(2) we have \(B \subseteq Y - f(U) \) which is strongly \(g^s \)-closed. So, \(f(U) \) is strongly \(g^s \)-open. Therefore, \(f: (X, \tau) \to (Y, \sigma) \) is strongly \(g^s \)-open.

By similarly, we can prove this theorem for a case, if, \(f: (X, \tau) \to (Y, \sigma) \) is strongly \(g^s \)-closed.

Remark 5.3. The composition of two strongly \(g^s \)-closed (resp. strongly \(g^s \)-open) mappings may not be strongly \(g^s \)-closed (resp. strongly \(g^s \)-open). The following examples show this fact.

Example 5.5. Let \(X \), \(Y \), \(Z \) \{a, b, c, d\} with topologies \(\tau_X \) \{X, \varphi, \{a\}, \{a, b\}\} \{a, c, d\}\}, \(\tau_Y \) \{Y, \varphi, \{c, d\}\} and \(\tau_z \) \{Z, \varphi, \{c, d\}\}. Then, a mapping \(f: (X, \tau_X) \to (Y, \tau_Y) \) which defined by \(f(a) = a \), \(f(b) = d \), \(f(c) = b \) and \(f(d) = c \) and a mapping \(g: (Y, \tau_Y) \to (Z, \tau_z) \) which also defined by \(g(a) = g(b) = a \), \(g(c) = c \) and \(g(d) = b \) are strongly \(g^s \)-closed, but \(g \circ f \) is not strongly \(g^s \)-closed.

Example 5.6. Let \(X \), \(Y \), \(Z \) \{a, b, c, d\} with topologies \(\tau_X \) \{X, \varphi, \{a\}, \{a, b\}\} \{a, c, d\}\}, \(\tau_Y \) \{Y, \varphi, \{a\}, \{b, c\}\} \{a, b, c\}\}, \(\tau_z \) \{Z, \varphi, \{c, d\}\} and topologies \(\tau_z \) \{Z, \varphi, \{c, d\}\}. Then, a mapping \(f: (X, \tau_X) \to (Y, \tau_Y) \) which defined by \(f(a) = a \), \(f(b) = d \), \(f(c) = c \) and
\[\begin{align*}
&f(d) \quad b \quad \text{and a mapping} \quad g: (Y, \tau_Y) \to (Z, \tau_Z) \quad \text{which also defined by} \quad g(a) \quad g(c) \quad c \quad g(b) \quad d \quad \text{and} \quad g(d) \quad b \\
&\text{are strongly} \quad g^{s} \quad \text{-open, but} \quad g \circ f \quad \text{is not strongly} \quad g^{s} \quad \text{-open.}
\end{align*}

In the following, we give the conditions under which the composition of two strongly \(g^{s} \)-closed (resp. strongly \(g^{s} \)-open) may be strongly \(g^{s} \)-closed (resp. strongly \(g^{s} \)-open).

Theorem 5.3. Let \(f: (X, \tau_X) \to (Y, \tau_Y) \) and \(g: (Y, \tau_Y) \to (Z, \tau_Z) \) be two mappings. Then, the following statements are hold:

(i) If \(f \) is closed (resp. open) and \(g \) is strongly \(g^{s} \)-closed (resp. strongly \(g^{s} \)-open), then \(g \circ f \) is strongly \(g^{s} \)-closed (resp. strongly \(g^{s} \)-open).

(ii) If \(g \circ f \) is strongly \(g^{s} \)-closed (resp. strongly \(g^{s} \)-open) and \(f \) is surjective continuous, then \(g \) is strongly \(g^{s} \)-closed (resp. strongly \(g^{s} \)-open).

(iii) If \(g \circ f \) is closed (resp. open) and \(g \) is injective strongly \(g^{s} \)-continuous then, \(f \) is strongly \(g^{s} \)-closed (resp. strongly \(g^{s} \)-open).

Proof.

(i) Let \(G \) be a closed subset of \(X \). Then, \(f(G) \) is closed in \(Y \). But, \(g \) is strongly \(g^{s} \)-closed, then \(g(f(G)) \) is strongly \(g^{s} \)-closed in \(Z \). Therefore, \(g \circ f(G) \) is strongly \(g^{s} \)-closed.

(ii) If \(F \) is closed set in \(Y \), then \(f^{-1}(F) \) is closed in \(X \). Hence, by hypothesis, \((g \circ f)(f^{-1}(F)) \) is strongly \(g^{s} \)-closed. Since, \(f \) is surjective, then \(g(F) \) is strongly \(g^{s} \)-closed. Therefore, \(g \) is strongly \(g^{s} \)-closed.

(iii) If \(F \) is closed set in \(X \), then \(g \circ f(F) \) is closed in \(Z \). Hence, by hypothesis, \(g^{-1}(g \circ f(F)) \) is strongly \(g^{s} \)-closed. Since, \(g \) is injective, then \(f(F) \) is strongly \(g^{s} \)-closed. Therefore, \(f \) is strongly \(g^{s} \)-closed.

6. **strongly \(g^{s} \)-homeomorphisms.**

Definition 6.1. A bijection \(f: (X, \tau_X) \to (Y, \sigma_Y) \) is called a strongly \(g^{s} \)-homeomorphism if \(f \) is both strongly \(g^{s} \)-continuous and strongly \(g^{s} \)-open.

Remark 6.1.

(1) Every semi-homeomorphism (B) is strongly \(g^{s} \)-homeomorphism.

(2) Every strongly \(g^{s} \)-homeomorphism is sg-homeomorphism (resp. gs-homeomorphism).

The converse of above remark is not true as is shown by the following examples.

Example 6.1. Let \(X = \{a, b, c, d\} \) with two topologies \(\tau_X = \{X, \varnothing, \{c, d\}\} \) and \(\tau_Y = \{Y, \varnothing, \{a\}, \{b\}, \{a, b\}\} \). Then, a mapping \(f: (X, \tau_X) \to (Y, \tau_Y) \) which defined by \(f(a) \quad d \quad f(b) \quad c \quad f(c) \quad a \quad \text{and} \quad f(d) \quad b \) is strongly \(g^{s} \)-homeomorphism but not semi-homeomorphism (B).

Example 6.2. If \(X = \{a, b, c\} \) with topology \(\tau_X = \{X, \varnothing, \{a, b\}, \{c\}\} \) and, then a mapping \(f: (X, \tau_X) \to (X, \tau_X) \) which defined by \(f(a) \quad a \quad f(b) \quad c \quad \text{and} \quad f(c) \quad b \) is sg-homeomorphism and gs-homeomorphism but not strongly \(g^{s} \)-homeomorphism.

By Remark 6.1 and the above examples we obtain the following diagram.

\[\begin{array}{ccc}
\text{homeomorphism} & \longrightarrow & \text{semi-homeomorphism (B)} \\
\downarrow & & \downarrow \\
\text{strongly } g^{s} \text{-homeomorphism} & \quad & \quad \\
\downarrow & & \downarrow \\
\text{sg-homeomorphism} & \longrightarrow & \text{gs-homeomorphism}
\end{array} \]

Proposition 6.1. Let \(f: (X, \tau_X) \to (Y, \sigma_Y) \) be a bijective and strongly \(g^{s} \)-continuous map. Then, the following statements are equivalent:

(i) \(f \) is strongly \(g^{s} \)-open,
(ii) \(f \) is strongly \(gs \)-homeomorphism,

(iii) \(f \) is strongly \(gs \)-closed.

Proof. (i) \(\rightarrow \) (ii). It is clear from Definition 6.1.

(ii) \(\rightarrow \) (iii). Since, \(f \) is strongly \(gs \)-homeomorphism, then \(f \) is strongly \(gs \)-open. But, \(f \) is bijective, hence by Theorem 5.1, \(f \) is strongly \(gs \)-closed.

(iii) \(\rightarrow \) (i). Obvious.

Remark 6.2. The composition of two strongly \(gs \)-homeomorphism mappings may not be strongly \(gs \)-homeomorphism. The following example shows this fact.

Example 6.3. Let \(X, Y, Z \) \{a,b,c\} with topologies \(\tau_X \) \{X,\(\varphi \),\{a\}\}, \(\tau_Y \) \{Y,\(\varphi \),\{a,c\}\} and \(\tau_Z \) \{Z,\(\varphi \),\{c\}\}. Then, a mapping \(f: (X, \tau_X) \rightarrow (Y, \tau_Y) \) which defined by \(f(a) \) \(b \), \(f(b) \) \(b \) and \(f(c) \) \(a \) and a mapping \(g: (Y, \tau_Y) \rightarrow (Z, \tau_Z) \) which also defined by \(g(a) \) \(c \), \(g(b) \) \(b \) and \(g(c) \) \(a \) are strongly \(gs \)-homeomorphism, but \(g \circ f \) is not strongly \(gs \)-homeomorphism.

References

